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Abstract

Virtual and augmented reality (VR/AR) display systems strive to generate perceptually realistic user

experiences, that is, the ability to render digital objects that a human observer cannot distinguish

from a real object. Current-generation systems have made significant progress towards this goal,

however still struggle to match the spatio-temporal and depth sensing capabilities of human vision,

constrained by the limited compute budgets, hardware, and transmission bandwidths of wearable

computing systems. Gaze-contingent rendering and display paradigms have emerged as a promising

solution. Enabled by recent developments in wearable eye tracking systems, this suite of techniques

utilizes real-time eye movement sensing to adjust content to reduce bandwidth requirements or

improve visual experience.

In this dissertation, we introduce and evaluate several approaches that aim to create more per-

ceptually realistic VR and AR experiences using gaze-contingent display techniques. We model both

the spatio-temporal sensitivity of the human visual system and how perception is affected by the

distribution of visual attention. In both cases we demonstrate that exploiting these effects could

significantly improve potential bandwidth savings of existing approaches. Next, we demonstrate

how these bandwidth savings are directly dependent on the latency of the gaze-contingent display

system, showing that reducing the latency of current generation systems could enable up to double

the bandwidth savings. Finally, we describe how gaze-contingent stereoscopic rendering can im-

prove the accuracy of disparity and depth rendering, including improving shape distortion in VR

and alignment of physical and digitally rendering objects in AR.
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Chapter 1

Introduction

“The screen is a window through which one sees a virtual world. The challenge is to

make that world look real, act real, sound real, feel real.”

- Ivan Sutherland, 1965

Virtual and augmented reality, or VR and AR, are next-generation display systems that promise

new ways to interact with digital content, feeding us information or placing us in environments that

would otherwise be infeasible or dangerous. While entertainment in the form of video games, video

streaming, or artistic experiences may have been the most common use case for VR and AR to

date, these systems have also begun to enable innovative solutions in various other industries. For

example, in education and business, VR has been used to promote diversity, equity and inclusion

with immersive empathy training [1]. While in medicine, VR has enabled modern medical training

solutions [2] and AR has helped give surgeons “x-ray vision” – the ability to visualize pre-operative

scans superimposed on the patient [3, 4].

For many of these applications it is desirable, if not critical, that the display systems synthesize

perceptually realistic visual experiences. To quantify this, the research community has adopted the

visual Turing test as the criterion for success. Similar to the Turing test, devised by Alan Turing in

1950, to evaluate whether a computer can pass for a human, Wetzstein and Lanman [5] popularized

the visual Turing test to evaluate whether a display can recreate digital content that a human

observer cannot distinguish from the real world. It’s a subjective test, and one that no VR or AR

technology can pass today. While VR can provide amazingly immersive experiences and AR can

render impressive world-locked content, neither is at the level where anyone would wonder whether

what they’re looking at is real or virtual. One of the greatest challenges is simply resolution. To be

able to pass the visual Turing test, we need to be able to form an image on the retina such that the

observer cannot tell that the photons are emitted from discrete pixel locations, or from only a small

region in space. So we need a display that covers at least the field of view (FOV) of the human

1



2 CHAPTER 1. INTRODUCTION

visual system (HVS), with pixels smaller than our spatial resolving capacity, or around 13,000 pixels

just in the horizontal direction1 – far more than any existing consumer display. Short of this, we

have to make a trade-off between resolution and FOV with the number of pixels we have available

with current display technology, resulting in visual artifacts and detracting from perceptual realism.

But even if current display technology could meet such specifications, drive and operate that many

pixels, GPU performance budgets are far from that required to render such an enormous number

of pixels, not to mention compressing and transmitting the 17 billion2 pixels per second needed to

run such a display. To put that into perspective, we’d need around 20 HDMI cables to move the

∼ 50 GB/s.

However, many of these pixels are squandered due to fact that our perceptual capabilities vary

across our visual field. For one, only a small central region of our retina, about 4◦ in diameter, called

the fovea, is responsible for our spatial resolving capacity [6]. Outside the fovea, this ability falls off

very rapidly. In fact, by 20◦ of eccentricity, it’s already dropped by 90%, and if we built a display

that covered our entire visual field, over 95% of pixels would be outside this boundary 3.

So with recent developments in wearable eye-tracking devices [9], it’s no surprise that perceptually-

aware computer graphics approaches have drawn extensive attention from various applications. In

particular, gaze-contingent rendering and display has emerged as a promising solution to the band-

width challenges of VR and AR, attempting to balance the amount of information displayed against

the visual information processing capacity of the observer through real-time eye movement sensing;

see [10,11] for a review of this area. Based on the assumed knowledge of the instantaneous location

of the observer’s gaze position, content can be imperceptibly adjusted through several display pro-

cessing approaches, including foveated rendering [7,12,13], compression [14,15] and display [16,17],

to reduce rendering bandwidth or transmission requirements. In Chapter 2 we provide a detailed

review of these works, along with a brief overview of terminology and techniques used to quantify

visual perception relevant for later chapters.

However, while foveated graphics to date has typically focused on exploiting the variation in

spatial sensitivity across the retina, the human visual system has other limitations that could be

utilized to improve bandwidth savings. In Chapters 3 and 4 we describe two different approaches to

doing exactly this, by modelling the spatio-temporal sensitivity and attentional effects of the human

visual system, respectively. Each demonstrate the potential for significant compression gains over

existing spatial-only approaches. In Chapter 5 we make the claim that latency – the time between

a change in the viewer’s gaze and the resulting change in the display’s pixels – of a gaze-contingent

display system is directly connected to the bandwidth savings afforded by foveated graphics. With a

custom, low-latency foveated compression system, we demonstrate that up to double the bandwith

1Assuming a horizontal FOV of 220◦ and a spatial resolving capacity of 1 arcmin
2Assuming a conservative visual acuity of 40 cpd, a CFF of 90 hz and a FOV of 220◦ × 135◦
3Based on a visual field size of 220◦ × 135◦ and the acuity model of Geisler et al. [7], fit with parameters from

Robson et al. [8]
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savings could be achieved, just by lowering the system latency.

The emergence of wearable eye tracking in VR and AR display systems also enables improved

perceptual realism with the rendering of dynamic gaze effects. Gaze-contingent display can be used

to support focus cues, pupil steering, ocular parallax [18] and improve distortion correction [19] (see

Chapter 2 for a detailed review). In Chapter 6 we describe how gaze-contingent stereo rendering

could improve the accuracy of disparity and depth rendering by accounting for dynamic shifts of

the optical center of the human eye. Our findings demonstrate significant improvements of disparity

and shape distortion in a VR setting, and consistent alignment of physical and digitally rendered

objects across depths in AR.

While VR and AR display systems have made significant progress towards the ultimate goal of

passing the visual Turing test, the limited compute budgets, hardware, and transmission bandwidths

of wearable computing systems make matching the spatio-temporal and depth sensing capabilities

of the human vision challenging. In this dissertation, we introduce and evaluate several approaches

that work towards reducing this challenge by utilizing the gaze-contingent rendering and display

paradigm.
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Included Publications

The research presented in this dissertation is compiled from several earlier publications. The works

have been restructured to have a shared background chapter and supplemental material has been

incorporated into the main text or appendices. The following is list of the works and where they

appear in this document:

• A Perceptual Model for Eccentricity-dependent Spatio-temporal Flicker Fusion and its Appli-

cations to Foveated Graphics4 is reproduced and adapted in Chapter 3 and Appendix A, along
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the idea, designed and conducted all user studies. B.K. fit the model, P.K. wrote and analyzed
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• Optimizing Depth Perception in Virtual and Augmented Reality through Gaze-contingent Stereo
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input from all authors. G.W. supervised the project.
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rights licensed to ACM.
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Review 52.1 (2022): 10-19. © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
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Chapter 2

Background

Gaze-contingent displays use eye tracking to update displayed content in real-time. This is usually

to exploit variations in perceptual capabilities to save bandwidth or compute, or to render dynamic

gaze effects that improve depth rendering or visual comfort. In this chapter, we define some relevant

terms from vision science, explore how some relevant perceptual capabilities vary across the visual

field, and describe how previous works have used this knowledge to create gaze-contingent rendering

and display paradigms.

2.1 Perceptual Abilities Relevant for VR and AR

The HVS is limited in its ability to sense variations in light intensity over space and time. Further-

more, these abilities are dependent on many factors, including where the light lands on the retina

and how the brain chooses to process the resulting signal. Understanding and quantifying these

perceptual abilities is critical to improving the perceptual realism of VR and AR devices, including

developing new gaze-contingent display techniques. In this section we provide a brief overview of

the HVS, describing terminology used in later chapters to quantify perceptual abilities and relevant

models used for display techniques in VR and AR.

2.1.1 The Human Eye and Vision

The HVS is made up of the eye and brain, connected by the optic nerve and optic tract. The eye

serves as the camera, while the brain is responsible for processing the information. When a light ray

hits the eye, it first passes through the cornea and undergoes refraction. The refracted ray passes

through the aqueous humor, the iris, the lens, the vitreous humor, and finally, reaches the retina –

the image sensor of the human eye (see Figure 2.1). The light photons reaching the retina are then

detected and converted to electrical signals by two types of photoreceptors: rods and cones, which

5
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is then transmitted to the central neural system by ganglion cells for further processing. While we

have 120 million rods, six million cones, the number of ganglion cells present in the retina is only

around 1.2 million [20,21], yet still help the retina transmit data at roughly the rate of an Ethernet

connection (∼10 Mbit/s) [22].

cornea
pupil

retina

lens

aqueous 
humor

vitreous 
humor

optic
nerve

iris
fovea

rod

cone

ganglion cell bipolar cell

to brain

Figure 2.1: Anatomy of the human eye. When a light ray hits the eye, it first passes through the cornea
and undergoes refraction. The refracted ray passes through the aqueous humor, the iris, the lens and the
vitreous humor, to the retina. The light photons are then detected and converted to electrical signals by
rods and cones and transmitted by ganglion cells to the brain for further processing. Retinal cells image
from Casey Henley CC BY-NC-SA.

However, these photoreceptors are not evenly distributed across the retina. Cones peak in high

density at the fovea, a small area of the retina about 1.5 mm in diameter [23]. Ganglion cell density

is also concentrated around the fovea, such that the number of photoreceptors connected to a single

ganglion cell increases with distance from the fovea, leading to decreased visual sensitivity (see

Section 2.1.4).

2.1.2 Eye Movements

Since optimal vision of small details is only obtained by a small region of the retina, the eyes

make short, rapid movements called saccades to scan visual scenes with the high-resolution fovea.

While these ballistic-like movements can occur at speeds of up to ∼900◦/s [24], perception is largely,

although not completely supressed (referred to as saccadic suppression), so that the associated retinal

image movement does not cause disturbance. Since this occurs a short period before, during, and

after the eye movement (totaling ∼50/,ms [25]), this can reduce some of the challenges they pose

to gaze-contingent systems. Though physiologically the eyes can rotate up to around 45◦ from the

straight ahead position during a saccade [26], in practice, this rarely exceeds 20◦, as head movement

is usually used to fixate on targets outside this.

Smooth pursuit movements are much slower tracking movements of the eyes designed to keep a

moving stimulus on the fovea [27]. Even so, the eyes are not fully steady, instead showing a variety

of small-amplitude shifts which can be broken into three components: microsacaades, drift, and
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tremor (see [24, 28] for a detailed review). Fine detail is explored with a slower (velocities up to

1◦/s) random-walk-like pattern called drift, where every so often the fixation position is corrected

with microsaccades (saccades with amplitude less than 1◦). This motion also consists of a small

(less than 0.01◦/s) continuous high frequency spectrum (up to 200 Hz) called tremor.

2.1.3 The Visual Field

The visual field, also referred to as the FOV of the visual system, describes the range of angles

that can be seen by the human eye while fixating straight ahead. The normal1 monocular human

visual field, that is the region seen by a single eye, extends to approximately 60◦ nasally (toward the

nose, or inward) from the vertical meridian in each eye, to 110◦ temporally (away from the nose, or

outwards) from the vertical meridian, and approximately 60◦ above and 75◦ below the horizontal

meridian [29, 30]. Thus the total visual field is approximately 220◦ horizontally by 135◦ vertically

(illustrated in Figure 2.2), given by the union of the monocular visual fields. For comparison,

current generation commercial VR and AR headsets can provide a FOV up to approximately 115◦

horizontally by 90◦ vertically 2 (outlined in red in Figure 2.2).

+110°-110°

+60°-60°

+10°-10°

peripheral 
vision

gaze direction

fovea foveal
vision

+2°-2°

Side View

gaze
direction

-75°

+60°

e°

e°

Top View

Figure 2.2: Illustration of the human visual field (also referred to as the human FOV). (left) The vertical
visual field extends 135◦, 60◦ above and 75◦ below the horizontal meridian. The eccentricity of a point e is
the angular distance of that point from the fovea, or equivalently, from the gaze direction. (right) The total
visual field extends 220◦ horizontally. This is divided into foveal and peripheral regions for the purposes of
this dissertation. The FOV of current-generation commercial VR displays is illustrated in red.

While these display systems target covering the total visual field, it is also useful to note that

much of this area is seen by only one eye – effectively reducing depth perception in these regions (see

Section 2.1.8). The area seen by both eyes, referred to as the binocular visual field, is approximately

1Significant individual differences exist [6].
2Based on the HTC VIVE Pro 2.
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120◦ horizontally by 135◦ vertically, given by the intersection of the monocular visual fields.

Gaze-contingent display solutions (and this dissertation), usually divide the visual field (or equiv-

alently, the retina) into “foveal” and “peripheral” regions in order to more easily refer to their differ-

ing characteristics [12, 13, 31]. Defined by eccentricity, e, or the angular distance of that point from

the fovea, these regions are illustrated in Figure 2.2. Even though the fovea actually represents a

much smaller area, the VR and AR community usually refer to the central ∼10◦ region (referred to

as the perifovea by vision scientists [23]) as foveal vision, since this is where most of the rendering

effort is concentrated. Beyond that is referred to as the periphery.

2.1.4 Visual Acuity and the Minimum Angle of Resolution

The most widely used measure of the visual resolution of the HVS is visual acuity, which measures

the size of the smallest detail in a visual target that permits some criterion level of identification or

detection performance [32]. The smaller the size of this critical detail, the better the vision of the

observer. Visual acuity is highest in the fovea, where photoreceptors are packed most densely. Here,

each cone is ∼0.5′ (0.5 arcminutes or 1/120 of a degree of visual angle) in size [33,34], limiting acuity

to ∼60 cpd (cycles per degree) by the Nyquist sampling theorem. However, empirical population

measurements suggest that the population average is actually closer to 40–50 cpd [8, 12, 35], largely

attributed to distortions before the light reaches the retina.

As illustrated in Figure 2.3 (left), 20/20 vision means that a distance of 20 ft the individual can

just recognize letters on a Snellen chart whose limbs subtend 1′ (equivalent to an acuity of 30 cpd).

Currently, this is considered normal (or average) visual acuity and is used as the target for display

design [36], though currently, commercial VR displays can hardly provide 20/90 visual acuity 3 i.e.

4.5′ pixel size at 20 ft.

Visual acuity drops off rapidly outside the fovea, in fact, by 20◦ of eccentricity, it’s already

dropped by 90% (see Figure 2.3). This falloff has been well described in the literature by many

equivalent models [7,37,38] and attributed primarily to the drop in retinal ganglion cell densities [39]

but also lens aberrations [35, 40]. In Chapter 3, we use the model of Geisler and Perry [7] shown

in Figure 2.3 (right panel, middle plot) to extend our eccentricity-dependent spatio-temporal flicker

fusion model data to higher spatial frequencies.

As will be described in Section 2.2.2, many techniques in foveated graphics [12, 13, 42–44] base

their sampling distribution on the reciprocal of visual acuity, the minimum angle of resolution

(MAR). Then normal (or 20/20) visual acuity is equivalent to a MAR of 1’.

3Based on the HTC VIVE Pro 2.
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Figure 2.3: Visual acuity, 20/20 vision and the minimum angle of resolution. (left) Snellen charts are
commonly used to measure visual acuity. They are designed such that a person with 20/20 vision can just
recognize letters whose limbs subtend 1 arcmin (1’) at a distance of 20 ft. (right) Top plot: Distribution of
photoreceptors (rods and cones) across the retina (data from Pirenne [41]). Between 13.6◦ to 21.6◦ at the
nasal side is a photoreceptor-free region called blind spot. Middle plot: Visual acuity fall-off model proposed
by Geisler and Perry [7], display relative to the fovea. Outside the fovea visual acuity drops off rapidly –
by 20◦ of eccentricity, it’s already dropped by 90%. Bottom plot: Model of MAR across eccentricity by
Guenter et al. [12].

Defined as the smallest angle at which two points are perceived as different [45], the MAR has

been shown to increases approximately linearly with eccentricity, modelled by:

ω(e) = me + ω0 (2.1)

where w is the MAR (in degrees per cycle), e is the eccentricity angle (in degrees), ω0 = 1/48◦

(in cycles per degree) is the smallest resolvable angle at the fovea, and m ≈ 0.022 − 0.034 is the

experimentally fit MAR slope (dependent on parameters of the display).

However, the objection to visual acuity (and equivalently, MAR) as an assessment of spatial vision

is that it only measures ability to perceive sharp and clear outlines of very small (high frequency)

objects. It fails to assess visual capability over the full range of spatial frequencies and luminance

changes present in typical real-world scenes. Thus it has become common to measure the contrast

sensitivity function.
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2.1.5 Contrast Sensitivity

Contrast sensitivity measures the ability to detect identify minute differences in shadings and pat-

terns [46]. Sinusoids provide a systematic way to describe our sensitivity to these variations, since

we can constitute any waveform with sums of sinusoids with different amplitudes and frequencies.

Schade [47] was the first to propose the use of sinusoidal gratings to measure the performance of

the visual system with the eye’s response in 1956. Soon after, Campbell and Robson [48] proposed

the first model of contrast sensitivity, known as a contrast sensitivity function (CSF), as a complex

and discrete function of the retina. One attractive feature of CSFs is that they are end-to-end

models, which explain the response of the visual system (detection) for a given input (luminance

pattern). Because of that, CSFs have found many applications in image/video visibility and quality

metrics [49–51], compression codecs [52, 53], tone-mapping operators [54], foveated rendering [55]

and many other areas of computer graphics.

The majority of recent CSF data comes from experiments with 2D Gabor wavelets (see Table 1

in [56]); a sinusoid multiplied by a Gaussian envelope to restrict spatial extent.

g(x,x0, θ, σ, fs) = A exp

(
−x + x0

2

2σ2

)
cos (2πfsx · [cos θ, sin θ]) + L0, (2.2)

where x denotes the spatial location on the display, x0 is the center of the wavelet, σ is the

standard deviation of the Gaussian in visual degrees, and fs and θ are the spatial frequency in cpd

and angular orientation in degrees for the sinusoidal grating function. Figure 2.4 shows the 1D

luminance profile of this function, together with a full 2D display at decreasing contrasts.

decreasing contrast

Cosine grating Gaussian aperture Gabor function

Figure 2.4: Gabor wavelets are most commonly used to measure contrast sensitivity. (top) A Gabor
wavelet is constructed by multiplying a sinusoidal function by a Gaussian function, illustrated here in 1D.
To find the contrast threshold (1/contrast sensitivity) for a given set of parameters, the contrast of a 2D
Gabor wavelet is reduced (bottom) until the orientation (in this case 0◦) can no longer be discriminated.
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Being a type of wavelet, these functions conveniently minimize the uncertainty principle con-

cerning time-frequency localization i.e. they measure response in a way that accounts for the fact

that low frequencies cannot be well localized in space. For this reason, we also choose to use these

wavelets to measure spatio-temporal flicker fusion thresholds in Chapter 3.

Contrast, c, can be defined as the degree of blackness to the whiteness of a particular object or

a target. For detection gratings, it is typically reported in units of Michelson contrast:

c =
Lmax − Lmin

Lmax + Lmin
=

m

L0

where Lmax and Lmin are the luminances of the peaks and troughs of the spatial grating. For

sinusoidal gratings, Michelson contrast is equivalent to the modulation amplitude m divided by

the background luminance L0. The contrast threshold, cT , is then the minimum contrast required

to perceive an object clearly. This threshold is typically measured using an n-alternative-force-

choice (2AFC, 3AFC,...) protocol, in which n stimuli are shown sequentially or side-by-side and the

observer needs to select the one that contained the stimulus or showed a different orientation from

the rest [57]. The contrast sensitivity is then the reciprocal of the contrast threshold:

S =
1

cT
=

L0

m

since sensitivity is high when the threshold is low, and visa versa.

Repeating and plotting this for different spatial frequencies is the CSF. The frequency at which

the contrast is at its maximum value of 1, or the log of the CSF is zero, is assumed to be the

boundary of visibility, and is related (but not identical to) the visual acuity as determined with

high-contrast targets.

You can observe the overall shape of your own CSF by looking at Figure 2.5. It shows sinusoidal

stripes of increasing spatial frequency along the horizontal axis and of decreasing contrast along

the vertical axis. At threshold contrast, your ability to detect the grating disappears, and so the

height at which you no longer see the stripes but just a gray background indicates your sensitivity

to the gratings at the given spatial frequency (approximately indicated by the red dotted line). If

the detection of contrast was dictated solely by image contrast, the alternating bright and dark bars

should appear to have equal height everywhere in the image. However, the bars seem to be taller in

the middle of the image, showing that people are most sensitive to intermediate spatial frequencies

at about 4-5 cpd [6].

The major challenge of measuring and modeling CSFs is the large number of parameters de-

scribing the stimulus. Several papers have independently investigated many of these, including

background luminance [58–60], size of the stimulus [61], eccentricity [62], orientation [63] and chro-

maticity [64] of the pattern.
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Figure 2.5: Demonstration of the shape of the contrast sensitivity function for luminance gratings. Spatial
frequency increases continuously from left to right, and contrast increases from top to bottom. The envelope
of the striped region (approximated by the red dotted line) should approximate the sCSF.

Furthermore, most visual scenes show variations in both spatial and temporal contrast. Just as

it is possible to obtain the spatial CSF (sometimes referred to as the sCSF), it is also possible to

determine the temporal CSF (tCSF), by instead varying the temporal frequency of the sinusoid. The

frequency at which the tCSF is at its maximum value of 1, or the log of the CSF is zero, is assumed

to be the boundary of visibility, and is referred to as the critical flicker frequency (see Section 2.1.6).

Similar to the sCSF, several studies have independently investigated the effect of many parameters

on the tCSF [65,66].

However, spatial and temporal sensitivity are not independent. This relationship can be cap-

tured by varying both spatial and temporal frequency of the gratings to obtain the spatio-temporal

contrast sensitivity function (stCSF) [65] (shown in Figure 2.6). Kelly [67] was the first to con-

duct a systematic study of spatio-temporal patterns and fit an analytical function to stCSF data,

which was later adjusted by Daly [68] to better describe naturally observed stimuli shown on a

cathode-ray tube display. Both models, however, were limited to the fovea and a single luminance.

Watson and Ahumada [69] later devised the pyramid of visibility, a simplified model that can be

used if only higher frequencies are relevant. While also modeling luminance dependence, this model

was again not applicable to higher eccentricities. Subsequent work saw the refitting of this model for

higher eccentricity data but the original equation was simplified to only consider stationary content

and the prediction of sCSF [70]. However, at the time the work included in this dissertation was

published, there existed no unified model parameterized by all axes of interest; spatial frequency,
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temporal frequency, eccentricity and luminance [71]. In Chapter 3, we address this gap. In particu-

lar, we measure critical flicker fusion (see Section 2.1.6) rather than stCSF to be more conservative

in modeling the upper limit of human perception, for use in foveated graphics applications.
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Figure 2.6: Combined spatio-temporal CSF, representing luminance contrast sensitivity for different com-
binations of spatial and temporal modulation (data from Kelly [67]). Human contrast sensitivity is not
space-time separable.

Following growing interest in the topic, additional models capturing eccentricity dependence for

the full spatio-temporal domain have since been published [56,72]. Mantiuk et al. [73] proposed a new

video quality metric, FovVideoVDP, which used a CSF derived from the spatio-chromatic CSF from

Mantiuk et al. [64], the cortical magnification model (see Appendix B.1), and Kelly-Daly’s model [68]

discussed above. Later Mantiuk et al. [56] proposed a unified model, StelaCSF, which accounts for all

major dimensions of the stimulus: spatial and temporal frequency, eccentricity, luminance, and area

by combining data from several previous papers. For completeness, we provide a comparison our

eccentricity-dependent spatio-temporal flicker fusion model (described in Chapter 3) with StelaCSF

in Section 3.5.

2.1.6 Critical Flicker Frequency

Analogous to visual acuity and spatial resolution, and complimentary to the tCSF function, the

critical flicker frequency (CFF), or flicker fusion threshold, is a measure of the temporal resolution

of the visual system. These measurements capture the temporal frequency at which tCSF drops to

unity, or the boundary of visibility, but also represent the frequency at which an intermittent light

stimulus appears to be completely steady to the observer.
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While related, CFF and tCSF are used by vision scientists to quantify slightly different aspects

of human vision. The CFF is considered to be a measure of conscious visual detection dependent

on the temporal resolution of visual neurons, since at the CFF threshold, an identical flickering

stimulus varies in percept from flickering to stable [74]. While contrast sensitivity is considered to

be more of a measure of visual discrimination, as evidenced by the sinusoidal grating used in its

measure requiring orientation recognition [75].

Unlike the tCSF, temporal sensitivity has been observed to peak in the periphery, somewhere

between 20 − 50◦ eccentricity [76–78] at 70–120 Hz (depending on luminance), attributed to faster

cone cell responses in the mid visual field by Sinha et al. [79].

Several studies measure data points for these functions independently [80–82], across eccentric-

ity [76,83], as a function of luminance [84] and color [85], however few present quantitative models,

possibly due to sparse sampling of the measured data. Additionally, data is often captured at lu-

minances very different from typical VR displays. The Ferry–Porter [86] and Granit–Harper [87]

laws are exceptions to this, describing CFF as increasing linearly with log retinal illuminance and

log stimulus area, respectively. Subsequent work by Tyler et al. [88] showed that the Ferry-Porter

law also extends to higher eccentricities. We use this relationship in Chapter 3 to extend our

eccentricity-dependent spatio-temporal model of flicker fusion to additional display luminances.

2.1.7 Visual Attention

Even while our eyes are fixated on a particular location, it does not appear that the visual system

passively processes all the information available within the image. Rather, we selectively attend to

different aspects of it at different times [6]. Sometimes we attend globally to the whole scene; at

other times we attend to a selected object or set of objects; at still other times we attend locally to

a specific object part. Our ability to engage in these flexible strategies for preferentially processing

different information within the visual field is referred to as visual attention (or just attention).

There are several different types of attention [89] that can be used to explain many interesting

phenomena, including change blindness [90] or tunnel vision [91]. However, for the purpose of this

dissertation, we will focus discussion on spatial attention, which guides preferential processing to a

particular location in the visual field. Often modeled as a “zoom” or “variable-power lens”, that

is, the attended region can be adjusted in size, spatial attention defines a trade-off between its

allocation and processing efficiency because of the limited processing capacity of the brain [92]. As

illustrated in on the left in Figure 2.7, this region is most often directed overtly, by moving our eyes

towards the location, but we can also deploy attention to an area in the periphery covertly, via a

mental shift. Recently it has been shown that combinations of these approaches can be used to split

the “zoom lens” across two to four regions of the visual field when it is of use to the observer [93].

Physiologically, attention modulates neuronal responses and alters the profile and position of

receptive fields near the attended location [100]. Behaviorally, it improves performance in various
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Figure 2.7: Spatial visual attention. (left) Illustration of attention allocation. While the soccer player
is overtly attending to (focusing her eyes on) the soccer ball (yellow), she deploys some attention to her
periphery to monitor her teammate (pink). Image credit: CC0 from National Eye Institute, NIH. right)
Illustration of the “zoom lens” model of visual attention. Several studies have demonstrated that, under many
conditions, increasing the amount of attention allocated to a visual task can enhance performance [94, 95],
including contrast sensitivity [96, 97], visual acuity [98], and speed of information accrual [99], at a cost to
the unattended regions.

visual tasks. One prominent effect of attention is the modulation of performance in tasks that in-

volve the visual system’s spatial resolving capacity [101]. In line with the “zoom lens” model, several

studies have shown that covert attention enhances contrast sensitivity at the attended location at

the cost of decreased sensitivity at unattended locations across the visual field, at different eccentric-

ities and isoeccentric (polar angle) locations [89, 96, 102, 103]. In such studies, attention is typically

modulated by visual means, e.g., pre-cueing the location of the visual target [102,103], or by draw-

ing attention away from the stimuli by use of a concurrent visual task presented elsewhere [97,104].

Carrasco et al. [102] found that pre-cuing attention to the visual target enhanced contrast sensitivity

between 0.05 and 0.1 log units over a broad range of spatial frequencies, and later, Ling and Car-

rasco [105] described this attention effect as equivalent to applying an effective contrast gain to the

stimulus. A similar effect also occurs for visual acuity [106] and speed of information accrual [99].

Also in line with the “zoom lens” model, and most similar to our work in Chapter 4, Huang

and Dobkins [97] showed that when attention is divided across several points in the visual field, this

reduces its enhancement effect at each location. In particular, they showed that drawing attention

to the fovea with a rapid serial visual presentation task reduced contrast discrimination performance

in the periphery by up to a factor of 10. However, each of these studies measures a single position

somewhere between 5−10◦ eccentricity and often only for 1 or 2 users. To the best of our knowledge,

this effect has not been modeled over the visual field, nor is there any available data for the effect

in the periphery (> 10◦), which we rectify with our work in Chapter 4.
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2.1.8 Stereoscopic Acuity

The fact that humans have two laterally separated eyes whose visual fields overlap in the central

region of vision creates one of the most compelling experiences of depth. Since each eye views a

different perspective of the environment, the two retinal images are slightly different. That is, the

same point in the environment project to locations on the left and right retinae that are displaced in

a way that depends on how much closer or farther the point is from the fixation point (illustrated on

the left in Figure 2.8 by θL and θR). This relative angular displacement, i.e. θL − θR, is referred to

as the binocular disparity. If the binocular disparity of an object is small and within Panum’s fusion

area then we perceive it as a single, fused object [107]. This process, known as stereopsis, delivers a

sense of depth and solid shape, and is considered one of the strongest depth cues for objects within

a few meters [108,109].

virtual
image
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left eye right eye
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Figure 2.8: Binocular disparity in the real world and rendered by VR. (left) Since humans have laterally
separated eyes, the same point in the environment project to different locations on the left and right retinae.
The relative angular displacement, θL − θR, is referred to as the binocular disparity. (right) In VR and AR
this emulated by near eye displays that show slightly different images to the left and right eyes, calculated
using the geometry of the system, including the user’s inter-pupillary distance (IPD).

Stereoscopic acuity measures the ability to resolve binocular disparity, i.e. that two objects at

each eye differ slightly. The value of the difference in angular separation, when the separation in

depth is at threshold is called the stereoscopic acuity, and is generally very high for humans; ∼20′′

(20 arcseconds or 1/3 of an arcminute) [110, 111]; which is smaller than the angle subtended by an

individual photoreceptor in the fovea (see Section 2.1.4). However, this does decrease with retinal

eccentricity [112].
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As illustrated in Figure 2.8 (right), in order to emulate this depth cue in VR and AR, most

conventional systems use some form of near-eye displays to show slightly different images to the left

and right eyes. Since the displays are mounted close to the eyes to achieve a wearable form-factor,

lenses are often used to create virtual images at some distance, often 1− 2 m away from the viewer,

where the images are more easily focused. Then to generate the illusion of an object at a particular

depth, the geometry of the system (in the form of matrices, see Section 6.2.2), including the user’s

inter-pupillary distance (IPD) is used to calculate which pixels to light up to generate the retinal

disparity that would occur during natural viewing. However, as we will discuss in Chapter 6, since

humans have such high stereoscopic acuity, even small inaccuracies in this geometric calculation

leads to objects being perceived at a different depth than intended.

2.2 Gaze-contingent Rendering and Display

The gaze-contingent rendering and display paradigm has enabled a variety of important computer

graphics techniques that adapt to the user’s gaze direction [10,11]. In this section, we describe how

recent developments in eye tracking has enabled such techniques to be used in VR and AR display

systems. Then, we discuss several relevant gaze-contingent display works based on whether the gaze

data is used to reduce computation or transmission bandwidth (Foveated Graphics), or support

dynamic gaze effects.

2.2.1 Recent Developments in Eye Tracking

Eye tracking refers to the combination of hardware and software used to detect a user’s eyes over

time, usually to calculate where or what they are looking at [36]. The point in 3D space where

the user is deemed to be looking is referred to in the literature (and this dissertation) as the gaze

position. With the ability to track a user’s attention (overt attention, see Sec 2.1.7) in real-time,

eye tracking is useful for a wide range of applications, including vision research, saliency, marketing,

and as an input mechanism for computing [113]. In VR and AR, it not only enables gaze-contingent

display and rendering paradigms, but can also be used to enable user interactions [114], create more

realistic virtual avatars [115] or enable biometric authentication [116].

Most modern eye trackers rely on an infrared light source and video cameras to track the pupil

centers and the corneal reflection – a projection of the infrared rays from the outer surface of the

cornea (see illustration in Figure 2.1). During eye movement, the pupil follows the gaze direction,

while the corneal reflection remains unchanged. A personal calibration is usually required to find a

mapping function that converts the coordinates reported by the eye tracker to the coordinates of the

gaze position in the visual environment. When the gaze position is constrained to a 2D plane, as in

Chapters 4 and 5, where we require gaze position on a computer monitor, a standard point-based

calibration procedure is usually sufficient. During this procedure, the user is asked to sequentially
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fixate on a set of (5-16) small point targets displayed on the screen for a few seconds, the data from

which is used to fit a polynomial mapping function [114]. However when the gaze position could

be anywhere in 3D space, more calibration points are typically required to estimate line-of-sight

intersection, and even then, accuracy is usually lower and a continuing challenge for the commu-

nity [117, 118]. Table 2.1 lists typical accuracies4 of some commercially-available systems, both VR

devices with native eye tracking (above the divider) and the standalone devices used in this disser-

tation (below the divider). While calibration-free methods exist for multiple-camera settings [120],

the highest accuracy for a single camera is usually provided with user-specific calibration [121]. See

Liu et al. [118] for a detailed review of this area.

Table 2.1: Specifications of some commercially-available eye trackers, both VR devices with native eye
tracking (above the divider) and the standalone devices used in this dissertation (below the divider). Ac-
curacy is the average angular deviation between the true gaze position and the gaze position estimated by
an eye tracker. Sampling Rate or sampling frequency of an eye tracker refers to how many times per second
the eye is recorded by the eye tracker. Latency refers to the delay between eye movement events and the
time these events are received by the computer system (results from Stein et al. [119]). The Eyelink 1000,
used in Chapter 5, is often regarded as the industry “gold-standard”, however it is a bulky, desktop-based
system not usable for VR and AR. The PupilLabs Core is used in Chapter 4.

Company Accuracy Sampling Rate Latency
Fove-0 0.25-1.15◦ 70 Hz 16 ms
Varjo VR-1 1◦ 98 Hz 36 ms
HTC VIVE Pro Eye 1.1◦ 90 Hz 50 ms
PupilLabs Core 0.6◦ 200 Hz 12 ms
Eyelink 1000 0.25◦ 1000 Hz 2.2 ms

Eye tracking technology has been commercially-available for decades on desktop displays, but it’s

been the recent emergence of small, high-resolution cameras that have seen these systems mounted

near-eye, allowing use for VR and AR applications. We are already seeing more and more commercial

devices include native support, including the Microsoft Hololens 2, Magic Leap One, Varjo VR-1,

Fove-0, and HTC Vive Pro Eye, paving the way for widespread deployment of gaze-contingent

rendering and display paradigms.

2.2.2 Foveated Graphics

Foveated graphics encompasses a suite of gaze-contingent techniques that exploit eccentricity-

dependent aspects of human vision, such as acuity, to minimize the bandwidth of a graphics system

by optimizing bit depth [122], color-fidelity [123], level-of-detail [38,124,125], tone mapping [126–128]

or by simply reducing the number of vertices or fragments a graphics processing unit has to sample,

ray-trace, shade, or transmit to the display; see [10,11] for a review of this area.

4Specifications taken from published specifications and Stein et al. [119]. These are typically recorded under the
most ideal conditions and thus accuracies are usually lower in practice.
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Foveated rendering is perhaps the most well-known example of this class of algorithms [7, 12,

13, 129–132]; where rendering quality is progressively decreased toward the periphery to improve

performance. See Wang et al. [133] for a recent review of this area. In Chapter 4, we approximate

the pioneering approach of Guenter et al. [12] to validate our attention-aware CSF model. Assuming

that a few discrete layers are sufficient to model the acuity fall-off in the HVS, Guenter et al. [12]

used three blended layers rendered at different resolutions, centered at the gaze position or fovea,

as shown on the left in Figure 2.9. The innermost, foveal layer, is rendered at the highest (or

native display) resolution, while the middle and outermost layers are rendered at progressively lower

resolutions. All three layers are then interpolated to the display resolution and blended smoothly.

The MAR function (see Section 2.1.4 for more detail) is used to compute the size and resolution for

the eccentricity layers as shown in on the right in Figure 2.9, where the slope m is estimated from

user studies for the particular display parameters.
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Figure 2.9: Foveated rendering greatly reduces the number of pixels shaded and overall graphics computa-
tion. (left) Guenter et al. [12] rendered three eccentricity layers (red border = foveal layer, green = middle
layer, blue = outer layer) around the tracked gaze point (pink dot), shown at their correct relative sizes.
These are interpolated to native display resolution and smoothly composited to yield the final displayed
image. (right) The eccentricity later parameters are selected based on the MAR function. The foveal layer
is always sampled at the smallest MAR the display supports, ωmin. The other angular radii, e1 and e2 are
chosen by minimizing the sum of the pixels in all three layers. Images adapted from Guenter et al. [12].

Follow on works have explored adjustments to approximating the model of visual acuity fall-

off [31, 134–136], different layer blending approaches [13, 137] and peripheral degradation tech-

niques [136, 138, 139]. While foveated rendering has traditionally focused on exploiting the varying

spatial sensitivity of the human eye, several works have demonstrated chromatic degradation can

also be used [123, 140], exploiting the rapidly decreasing color sensitivity towards the periphery.

Recently, Tursun et al. [55] expanded this concept by considering local luminance contrast across

the retina, Xiao et al. [141] additionally consider temporal coherence, and Meng et al. [142] showed

that leveraging ocular dominance to further improve performance. To the best of our knowledge,

none of these methods exploit the eccentricity-dependent spatio-temporal characteristics of human

vision, perhaps because no existing model of human perception accounts for these in a principled
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manner. In Chapter 3 we develop such a model which could enable significant bandwidth savings for

all of the aforementioned techniques well beyond those enabled by existing eccentricity-dependent

acuity models.

Foveated display is another approach to reduce bandwidth and optimize visual quality by op-

tically manipulating light from one or more displays [16]. The foveation effect can be achieved by

either using a single display [143], or two separate displays [17, 144–146]. Yoo et al. [143] proposed

the first single-display-based near-eye foveated system based on temporal polarization multiplexing

and provides two operating modes, whereas Tan et al. [145], Kim et al. [17], and Lee at al. [144] use

two displays – one for the foveal region with a narrow FOV and the other for the peripheral region

with a wide FOV.

Finally, these ideas have also been applied to video processing and compression. Traditional

video compression removes temporal and spatial redundancy in a sequence of video frames. Foveated

video compression builds on these techniques by using real-time gaze information to concentrate data

allocation in an encoded video to the foveal region, achieving better compression in the periphery [14,

15, 131]. This includes techniques such as adapting encoding parameters [147], predicting a user’s

FOV [148] and upscaling highly compressed video using superresolution [149]. Instead of compressing

a single video stream, recently Romero et al. [150] demonstrated a system that stores a video in two

resolutions, low and high. A client first fetches the low-resolution stream, and then streams only the

cropped, high-resolution segments based on a viewer’s current gaze. Similarly, Jeppsson et al. [151]

divided a video into many small blocks and pre-encodes each block in many different resolutions.

Then, when streaming, the resolutions are chosen on the server based on gaze data and stitched

together at the client into three levels of resolution. Foveated video compression can achieve bitrates

that are 25 − 60% of the bitrates of traditional compression algorithms with similar visual quality.

In Chapter 5 we demonstrate an approach that achieves 80% compression by lowering the system

latency to sub 15 ms.

2.2.3 Supporting Dynamic Gaze Effects

The emergence of wearable eye tracking in VR and AR display systems also enables the rendering of

dynamic gaze effects, including focus cues, pupil steering, ocular parallax and improved distortion

correction. In Chapter 6 we discuss how they also enable us improve the perception of depth via

gaze-contingent disparity rendering.

Focus Cue Supporting Displays

Conventional displays cannot reproduce a critical aspect of 3D vision in the natural environment:

changes in stereoscopic depth are also associated with changes in focus. For users with normal vision,

this creates an unnatural condition known as the vergence–accommodation conflict [152], leading to
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double vision, compromised visual clarity, visual discomfort, and fatigue [153,154]. Moreover, a lack

of accurate focus also removes cues that are important for depth perception [108].

Several different solutions have been proposed, many utilizing gaze-contingent display paradigms.

Disparity manipulation is one such approach, where the disparities of a stereo image are remapped

to fit into the zone of comfort of a 3D display to mitigate the vergence–accomodation conflict and

improve user comfort [154–157]. This amounts to shifting the 3D scene forward or back according

to gaze depth such that the fixated object appears well within the zone of comfort, close to the

physical screen. Depth of field rendering is another computational approach, where gaze depth is

used to calculate and render the correct focus blur in the displayed scene [158–160]. While improving

perceptual realism, these approaches do not stimulate accommodation and thus, have not been found

to improve perception and comfort [158]. To address the issue of simulating correct accommodative

distances in a gaze-contingent manner, the focus distance needs to be shifted. Another type of

gaze-contingent display, referred to as varifocal displays, can address this by dynamically shifting

the image plane according to the gaze depth [161–164].

Pupil Steered Displays

Some types of near-eye displays, most notably light-field [165–167] and holographic [168–170] dis-

plays, can in theory provide natural parallax within their respective eye box volume. Similarly,

multifocal displays can be used to render focus blur by approximating the scene volume by decom-

position across a few virtual planes [171–173]. While these displays don’t rely on tracking gaze

position, the eye boxes of current demonstrations are too small to support a significant rotational

range of the eye [173]. This not only prevents realistic parallax, but can also easily destroy the visual

percept itself. One approach to exit pupil expansion is pupil steering [174–176], a gaze-contingent

display paradigm where a user’s eyes are tracked and the small exit pupils of the displays are optically

steered towards the user’s pupils.

Ocular Parallax Rendering

The gaze-contingent stereoscopic rendering approach we present in Chapter 6, builds off work from

Konrad et al. [18] on ocular parallax rendering. They show that the offset between the centers of

rotation and projection of the human eye creates an important monocular depth cue, ocular parallax.

While they demonstrated that using gaze positions to render this effect in VR and AR improves

ordinal depth perception and portrayal of realistic depth in monocular viewing conditions, we are

the first to show significant effects on absolute depth perception and also digital–physical object

alignment in VR and AR applications.
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Optical Distortion Correction

The lenses used in conventional VR headsets typically cause a number of visual artifacts that are not

seen with direct-view displays, such as significant optical distortion. In practice, this is mitigated

by counter-warping the displayed image. However, if the rendered distortion correction does not

update with eye rotation, the apparent optical distortion will continually change – a phenomenon

known as pupil swim [177]. Several approaches to mitigate this effect have been proposed using

gaze-contingent rendering, both in simulation [178,179] and demonstration [19].



Chapter 3

Towards Spatio-temporal Foveated

Rendering

With the goal of showing digital content that is indistinguishable from the real world, VR and AR

displays strive to match the perceptual limits of human vision. That is, a resolution, framerate,

and FOV that matches what the human eye can perceive. However, the required bandwidths for

graphics processing units to render such high-resolution and high-framerate content in interactive

applications, for networked systems to stream, and for displays and their interfaces to transmit and

present this data is far from achievable with current hardware or standards.

Foveated graphics techniques have emerged as one of the most promising solutions to overcome

these challenges (see Section 2.2.2). While these methods have typically built on the insight that

visual acuity, or spatial resolution, varies across the retina, common wisdom also suggests that so

does temporal resolution. This suggests that further bandwith savings, well beyond those offered by

today’s foveated graphics approaches could be enabled by exploiting such perceptual limitations with

novel gaze-contingent hardware or software solutions. However, as described in Section 2.1.5 and

illustrated in Table 3.1, at the time this work was published, no perceptual model for eccentricity-

dependent spatio-temporal aspects of human vision existed (see Section 3.5 for further discussion

on new work).

In this chapter, we experimentally measure user data and computationally fit models that ade-

quately describe the eccentricity-dependent spatio-temporal aspects of human vision. Specifically,

we design and conduct user studies with a custom, high-speed VR display that allows us measure

data to model CFF in a spatially-modulated manner. In this chapter, we operationally define CFF

as a measure of spatio-temporal flicker fusion thresholds. As such, and unlike current models of

foveated vision, our model is unique in predicting what temporal information may be imperceptible

for a certain eccentricity, spatial frequency and luminance (illustrated in Figure 3.1).

23
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Table 3.1: Existing models of CSF and CFF. Note that CSF models perception continuously across a range
of conditions while CFF only models the limit of temporal perception at high temporal frequencies. Unlike
ours, none of these models accounts for spatial and temporal variation as well as eccentricity and luminance.

Model Spat. Temp. Eccentr. Lum. Prop.
Tyler [86] ✗ ✓ ✗ ✓ CFF
Kelly [67] ✓ ✓ ✗ ✗ stCSF
Watson [69] ✓ ✓ ✗ ✓ stCSF
Watson [70] ✓ ✗ ✓ ✓ sCSF
This Chapter ✓ ✓ ✓ ✓ CFF

Using our model, we predict potential bandwidth savings of factors up to 3,500× over unprocessed

visual information and 7× over existing foveated models that do not account for the temporal

characteristics of human vision.
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Figure 3.1: Foveated graphics techniques rely on eccentricity-dependent models of human vision. While
such models are well understood for spatial acuity (left, [7]), our work is the first to experimentally derive
a more comprehensive model for the spatio-temporal aspects over the retina under conditions close to VR
and AR applications. As seen in the three plots on the right, we model CFF thresholds in an eccentricity-
dependent manner. The CFF varies with spatial frequency fs and luminance and it exhibits an anti-foveated
effect, with the highest thresholds observed in the near–mid periphery of the visual field. Our perceptual
model and its experimental validation could provide the foundation of future spatio-temporally foveated
graphics systems.

Specifically, in this chapter we: (1) design and conduct user studies to measure and validate

eccentricity-dependent spatio-temporal flicker fusion thresholds with a custom display, (2) fit several

variants of an analytic model to this data and also extrapolate the model beyond the space of our

measurements using data provided in the literature, including an extension for varying luminance,

and (3) analyze bandwidth considerations and demonstrate that our model may afford significant

additional savings for foveated graphics.
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3.1 Estimating Flicker Fusion Thresholds

To develop an eccentricity-dependent model of flicker fusion, we need a display that is capable

of showing stimuli at a high framerate and over a wide FOV. In this section, we first describe a

custom high-speed VR display that we built to support these requirements. We then proceed with

a detailed discussion of the user study we conducted and the resulting values for eccentricity and

spatial frequency–dependent CFF we estimated.

3.1.1 Display Prototype

Our prototype display is designed in a near-eye display form factor to support a wide FOV. As

shown on the left in Figure 3.2, we removed the back panel of a View-Master Deluxe VR Viewer and

mounted a semi-transparent optical diffuser (Edmund Optics #47-679) instead of a display panel,

which serves as a projection screen. This View-Master was fixed to an SR Research headrest to

allow users to comfortably view stimuli for extended periods of time. To support a sufficiently high

framerate, we opted for a Digital Light Projector (DLP) unit (Texas Instruments DLP3010EVM-LC

Evaluation Board) that rear-projects images onto the diffuser towards the viewer. A neutral density

(ND16) filter was placed in this light path to reduce the brightness to an eye safe level, measured

to be 380 cd/m2 at peak.

The DLP has a resolution of 1280 × 720, and a maximum frame rate of 1.5 kHz for 1-bit video,

360 Hz for 8-bit monochromatic video, or 120 Hz for 24-bit RGB video. We positioned the projector

such that the image matched the size of the conventional View-Master display. Considering the

magnification of the lenses, this display provides a pixel pitch of 0.1’ (arc minutes) and a monocular

FOV of 80◦ horizontally and 87◦ vertically.

To display stimuli for our user study, we used the graphical user interface provided by Texas

Instruments to program the DLP to the 360 Hz 8-bit grayscale mode, deemed sufficient for our

measurements of CFF, which unlike CSF, does not require precise contrast tuning. The DLP was

unable to support the inbuilt red, green and blue light-emitting diodes (LEDs) being on simulta-

neously, so we chose to use a single LED to minimize the possibility of artifacts from temporally

multiplexing colors. Furthermore, since the HVS is most sensitive to mid-range wavelengths, the

green LED (OSRAM: LE CG Q8WP) of peak wavelength 520 nm and a 100 nm full width at half

maximum, was chosen so as to most conservatively measure the CFF thresholds. We used Python’s

PsychoPy toolbox [180] and a custom shader to stream frames to the display by encoding them into

the required 24-bit RGB format that is sent to the DLP via HDMI.

Stimuli The flicker fusion model we wish to acquire could be parameterized by spatial frequency,

rotation angle, eccentricity (i.e., distance from the fovea), direction from the fovea (i.e., temporal,

nasal, etc.) and other parameters. A naive approach may sample across all of these dimensions,
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Figure 3.2: Our set-up for measuring user CFF thresholds. A photograph of a user in our custom VR
display prototype is shown on the left. An ND filter is used to reduce the brightness of a DLP which projects
onto a semi-transparent diffuser. On the right we show an illustration of the last 3 orders of test Gabor
wavelets (described in Table 3.2) shown at a contrast of 1. Eccentricities were chosen to cover a FOV of
60◦ at each scale. Orientation was chosen randomly from 45◦, 90◦, 135◦ and 180◦ at the point of beginning
a QUEST staircase.

but due to the fact that each datapoint needs to be recorded for multiple subjects and for many

temporal frequencies per subject to determine the respective CFFs, this seems infeasible. Therefore,

similar to several previous studies [76, 82, 181], we make the following assumptions to make data

acquisition tractable:

1. The left and right eyes exhibit the same sensitivities and monocular and binocular viewing

conditions are equivalent. Thus, we display the stimuli monocularly to the right eye by blocking

the left side of the display.

2. Sensitivity is rotationally symmetric around the fovea, i.e. independent of nasal, temporal,

superior, and inferior direction, thus being only a function of absolute distance from the fovea.

It is therefore sufficient to measure stimuli only along the temporal direction starting from the

fovea.

3. Sensitivity is orientation independent. Thus, the rotation angle of the test pattern is not

significant.

These assumptions allow us to reduce the sample space to only two dimensions: eccentricity e and

spatial frequency fs. Later we also analyze retinal illuminance l as an additional factor.

It is also worth observing that an eccentricity-dependent model that varies with spatial frequency

must adhere to the uncertainty principle. That is, low spatial frequencies cannot be well localized

in eccentricity. For example, the lowest spatial frequency of 0 cpd is a stimulus that is constant

across the entire retina whereas very high spatial frequencies can be well localized in eccentricity.

This behavior is appropriately modeled by wavelets. As such, we select our stimuli to be a set of 2D

Gabor wavelets. Described in detail in Section 4.1.1, we use a scaled and shift version of the general
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form to be suitable for display, such that the such that the pattern modulates between 0 and 1, with

an average gray level of 0.5. We also use the display specifications to convert the spatial locations on

the screen x and x0 from Equation A.1 to be defined in terms of eccentricities e and e0 (described

in Appendix A.1) The resulting stimulus exhibits three clearly visible peaks and smoothly blends

into the uniform gray field which covers the entire field of view of our display and ends sharply at

its edge with a dark background.

This choice of Gabor wavelet was motivated by many previous works in vision science, including

the standard measurement procedure for the CSF [75] (see Section 2.1.5), and image processing

[182, 183], where Gabor functions are frequently used for their resemblance to neural activations in

human vision. For example, it has been shown that 2D Gabor functions are appropriate models of

the transfer function of simple cells in the visual cortex of mammalian brains and thus mimicking

the early layers of human visual perception [184,185].

As a tradeoff between sampling the parameter space as densely as possible while keeping our user

studies to a reasonable length, we converged on using 18 unique test stimuli, as listed in Table 3.2.

We sampled eccentricities ranging from 0◦ to almost 60◦, moving the fixation point into the nasal

direction with increasing eccentricity, such that the target stimulus is affected as little as possible

by the lens distortion. We chose not to utilize the full 80◦ horizontal FOV of our display due to

lens distortion becoming too severe in the last 10◦. We chose to test 6 different spatial frequencies,

with the highest being limited to 2 cpd due to the lack of a commercial display with both high

enough spatial and temporal resolution. However, as described in Chapter 2, human visual acuity

is considerably higher; 60 cpd based on peak cone density [33] and 40–50 cpd based on empirical

data [8, 12, 35]. Later we use existing data to an extension for these higher spatial frequencies (see

Section 3.2.2). The Gaussian windows limiting the extent of the Gabor wavelets are scaled according

to spatial frequency, i.e., σ = 0.7/fs such that each stimulus exhibits the same number of periods,

defining the 6 wavelet orders. Finally, eccentricity values were chosen based on the radius of the

wavelet order to uniformly sample the available eccentricity range, as illustrated on the right in

Figure 3.2.

The wavelets were temporally modulated by sinusoidally varying the contrast from [−1, 1] and

added to the background gray level of 0.5. In this way, at high temporal frequencies the Gabor

wavelet would appear to fade into the background. The control stimulus was modulated at 180 Hz,

which is far above the CFF for all of the conditions, and thus appears invisible (non-flickering) to

the observer.

3.1.2 User Study

Participants Nine adults participated (age range 18–53, 4 female). Due to the demanding nature

of our psychophysical experiment, only a few subjects were recruited, which is common for similar

low-level psychophysics (e.g. [13]). Furthermore, previous work measuring the CFF of 103 subjects
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Table 3.2: Parameters of 18 test Gabor wavelets. We define 6 orders by spatial frequency (and radii) of the
stimuli. The number and eccentricity locations per order were chosen based on radius to uniformly sample
the available eccentricity range. fs: spatial frequency, σ: wavelet standard deviation, e: eccentricity. (*)
Note that in practice the extent was limited by our display FOV and fs = 0.0055 cpd is used for the analysis
in Section 3.2.1.

Order fs (cpd) σ (◦) e (◦)

0 0.000(*) inf(*) 0.0

1 0.011 63.0 0.0

2 0.041 17.2 0.0, 19.2

3 0.154 4.6 0.0, 24.5, 48.2

4 0.571 1.2 0.0, 14.8, 29.2, 42.7, 55.0

5 2.000 0.5 0.0, 12.3, 24.4, 35.9, 46.8, 56.8

found a low variance [186], suggesting sufficiency of a small sample size. All subjects in this and

the subsequent experiment had normal or corrected-to-normal vision, no history of visual deficiency,

and no color blindness, but were not tested for peripheral-specific abnormalities. All subjects gave

informed consent. The research protocol was approved by the Institutional Review Board at Stanford

University.

Procedure To start the session, each subject was instructed to position their chin on the headrest

such that several concentric circles centered on the right side of the display were minimally distorted

(due to the lenses). The threshold for each Gabor wavelet was then estimated in a random order

with a two-alternative forced-choice (2AFC) adaptive staircase designed using QUEST [187]. The

orientation of each Gabor wavelet was chosen randomly at the beginning of each staircase from

0◦, 45◦, 90◦ and 135◦. At each step, the subject was shown a small (1◦) white cross for 1.5 s to

indicate where they should fixate, followed by the test and control stimuli in a random order, each

for 1 s. For stimuli at 0◦ eccentricity, the fixation cross was removed after the initial display so as

not to interfere with the pattern. The screen was momentarily blanked to a slightly darker gray

level than the gray background to indicate stimuli switching. The subject was then asked to use a

keyboard to indicate which of the two randomly ordered patterns (1 or 2) exhibited more flicker.

The ability to replay any trial was also given via key press and the subjects were encouraged to take

breaks at their convenience. Each of the 18 stimuli were tested once per user, taking approximately

90 minutes to complete.

Results Mean CFF thresholds across subjects along with the standard error (vertical bars) and

extent of the corresponding stimulus (horizontal bars) are shown in Figure 4.4. The table of measured
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values is included in Appendix A.3. The measured CFF values have a maximum above 90 Hz. This

relatively large magnitude can be explained by the Ferry–Porter law [86] and the high adaptation

luminance of our display. Similarly large values have previously been observed in corresponding

conditions [88]. As expected, the CFF reaches its maximum for the lowest fs values. This trend

follows the Granit–Harper law predicting a linear increase of CFF with stimuli area [76]. For higher

fs stimuli, we observe an increase of the CFF from the fovea towards a peak between 10◦ and 30◦

of eccentricity. Similar trends have been observed by Hartmann et al. [76], including the apparent

shift of the peak position towards fovea with increasing fs and decreasing stimuli size. Finally,

our subjects had difficulty to detect flicker for the two largest eccentricity levels for the maximum

fs = 2 cpd. This is predictable as acuity drops close to or below this value for such extreme retinal

displacements [7].

3.2 Fitting the Model

The measured CFFs establish an envelope of spatio-temporal flicker fusion thresholds at discretely

sampled points within the resolution afforded by our display prototype. Practical applications,

however, require these thresholds to be predicted continuously for arbitrary spatial frequencies and

eccentricities. To this end, we develop a continuous eccentricity-dependent model for spatio-temporal

flicker fusion that is fitted to our data. Moreover, we extrapolate this model to include spatial

frequencies that are higher than those supported by our display by incorporating existing visual

acuity data and we account for variable luminance adaptation levels by adapting the Ferry–Porter

law [88].

3.2.1 A Model of Spatio-temporal Flicker Fusion

Each of our measured data points is parameterized by its spatial frequency fs, eccentricity e, and

CFF value averaged over all subjects. Furthermore, it is associated with a localization uncertainty

determined by the radius of its stimulus u. In our design, u is a function of fs and, for 13.5% peak

contrast cut-off, we define u = 2σ where σ = 0.7/fs to be the standard deviation of our Gabor

wavelets.
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Relaxed model Full modelConservative model

Figure 3.3: Three different parameter fits for our flicker fusion model Ψ(e, fs) (columns). Orthographic
views of the eccentricity–CFF (second row) and spatial frequency–CFF (third row) planes show subject-
averaged measured points along with their variances (standard error of means, vertical bars). The horizontal
bars in the eccentricity dimension denote spatial extents of respective stimuli. The curves represent corre-
sponding cross sections of the fitted models.

We formulate our model as:

Ψ(e, fs) = max(0, p0τ(fs)
2 + p1τ(fs) + p2

+ (p3τ(fs)
2 + p4τ(fs) + p5) · ζ(fs)e

+ (p6τ(fs)
2 + p7τ(fs) + p8) · ζ(fs)e

2)

ζ(fs) = exp(p9τ(fs)) − 1

τ(fs) = max(log10 fs − log10 fs0 , 0),

where p = [p0, . . . , p9] ∈ R10 are the model parameters (listed in Table 3.3), ζ(fs) restricts

eccentricity effects for small fs and τ(fs) offsets logarithmic fs relative to our constant function

cut-off.
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We build on three domain-specific observations to find a continuous CFF model Ψ(e, fs) : R2 → R

that fits our measurements. First, both our measurements and prior work indicate that the peak

CFF is located in periphery, typically between 20◦ and 50◦ of eccentricity [76–78]. For both the

fovea and far periphery the CFF drops again forming a convex shape which we model as a quadratic

function of e. Second, because the stimuli with very low fs are not spatially localized, their CFF does

not vary with e. Consequently, we enforce the dependency on e to converge to a constant function

for any fs below fs0 = 0.0055 cpd. This corresponds to half reciprocal of the full-screen stimuli

visual field coverage given our display dimensions. Finally, following common practices in modeling

the effect of spatial frequencies on visual effects, such as contrast [188] or disparity sensitivities [189],

we fit the model for logarithmic fs.

Before parameter optimization, we need to consider the effect of eccentricity uncertainty. The

subjects in our study detected flicker regardless of its location within the stimuli extent m = [e ±
u] deg. Therefore, Ψ achieves its maximum within m and is upper-bounded by our measured flicker

frequency ft ∈ R. At the same time, nothing can be claimed about the variation of Ψ within m and

therefore, in absence of further evidence, a conservative model has to assume that Ψ is not lower

than ft within m. These two considerations delimit a piece-wise constant Ψ. In practice, based on

previous work [76, 78] it is reasonable to assume that Ψ follows a smooth trend over the retina and

its value is lower than ft value at almost all eccentricities within m.

Table 3.3: Parameters p0...9 for our model fitted for conservative and relaxed assumptions as well as the
full modeled extended using acuity data. The degrees-of-freedom adjusted R2 shows the fit quality.

Model Parameters R2

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

Conservative 94.4, -10.1, -4.08, 0.431, -0.280, 0.0484, -0.00912, 0.00679, -0.00140, 1.56 0.889

Relaxed 94.3, -10.1, -4.06, 0.430, -0.282, 0.0464, -0.00929, 0.00672, -0.00129, 1.58 0.938

Full 94.3, -10.1, -4.06, 0.435, -0.281, 0.0440, -0.00877, 0.00613, -0.00111, 1.58 0.938

Consequently, in Table 3.3 we provide two different fits for the parameters. Our conservative

model strictly follows the restrictions from the measurement and tends to overestimate the range

of visible flicker frequencies which prevents discarding potentially visible signal. Alternatively, our

relaxed model follows the smoothness assumption and applies the measured values as upper bound.

To fit the parameters, we used the Adam solver in PyTorch initialized by the Levenberg–Marquardt

algorithm and we minimized the mean-square prediction error over all extents m. The additional

constraints were implemented as soft linear penalties. To leverage data points with immeasurable

CFF values, we additionally force Ψ(e, fs) = 0 at these points. This encodes imperceptibility of

their flicker at any temporal frequency. Figure 4.4 shows that the fitted Ψ represents the expected
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effects well. The eccentricity curves (row 2) flatten for low fs and their peaks shift to lower e for

large fs. The conservative fit generally yields larger CFF predictions though it does not strictly

adhere to the stimuli extents due to other constraints.

3.2.2 Extension for High Spatial Frequencies

Due to technical constraints, the highest fs measured was 2 cpd. At the same time, the acuity of

human vision has an upper limit of 60 cpd based on peak cone density [33] and 40–50 cpd based on

empirical data [8, 12, 35] (see Section 2.1.4). To minimize this gap and to generalize our model to

other display designs we extrapolate the CFF at higher spatial frequencies using existing models of

spatial acuity.

For this purpose, we utilize the acuity model of Geisler and Perry [7]. It predicts acuity limit A

for e as

A(e) = ln(64)
2.3

0.106 · (e + 2.3)
, (3.1)

with parameters fitted to measurements of Robson and Graham [8]. Their study of pattern detection

rather than resolution is well aligned with our own study design and conservative visual performance

assessment. Similarly, their bright adaptation luminance of 500 cd/m2 is also close to our display.

A(e) predicts limit of spatial perception. We reason that at this absolute limit flicker is not

detectable and, therefore, the CFF is not defined. We represent this situation by zero CFF values in

the same way as for imperceptible stimuli in our study and force our model to satisfy Ψ(e,A(e)) = 0.

In combination with our relaxed constraints we obtain our final full model as shown in Figure 4.4.

It follows the same trends as our original model within the bounds of our measurement space and

intersects the zero plane at the projection of A(e).

3.2.3 Accounting for Adaptation Luminance

Our experiments were conducted at half of our display peak luminance L = 380 cd/m2. This is

relatively bright compared to the 50–200 cd/m2 luminance setting of common VR systems [190].

Consequently, our estimates of the CFF are conservative because the Ferry–Porter law (see Sec-

tion 2.1.6) predicts the CFF to increase linearly with logarithmic levels of retinal illuminance [88].

While the linear relationship is known, the actual slope and intercept varies with retinal eccentric-

ity [88]. For this reason, we measured selected points from our main experiment for two other display

luminance levels.

Four of the subjects from the model experiment performed the same procedure for a subset of

conditions with a display modified first with one and then two additional ND8 filters yielding effective

luminance values of 23.9 and 3.0 cd/m2. We then applied a formula of Stanley and Davies [191] to
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fs = 0.57 cpd e = 0 deg

3.0 23.9 190.03.0 23.9 190.0

Figure 3.4: Luminance scaling of our full model fitted for l0 = 1488Td. The points represent mean
measured CFF values and the lines the prediction of the transformed model. Vertical bars are standard
errors. The left plot shows varying slopes across e (with fs = 0.57 cpd). The right plot shows varying
intercepts across fs (with e = 0deg).

compute the pupil diameter under these conditions as

d(L) = 7.75 − 5.75

(
(La/846)0.41

(La/846)0.41 + 2

)
, (3.2)

where a = 80 × 87 = 6960 deg2 is the adapting area of our display. This allows us to derive

corresponding retinal illuminance levels for our experiments using l(L) = πd(L)2/4 · L as 67.3, 321

and 1488 Td and obtain a linear transformation of our original model Ψ(e, fs) to account for L with

an eccentricity-dependent slope as

Ψ̂(e, fs, L) = (s(e, fs) · (log10(l(L)/l0)) + 1)Ψ(e, fs) (3.3)

s(e, fs) = ζ(fs)(q0e
2 + q1e) + q2 (3.4)

where l0 = 1488 Td is our reference retinal illuminance, ζ(fs) encodes localization uncertainty for

low fs as in Equation 3.2.1 and q = [5.71 · 10−6,−1.78 · 10−4, 0.204] are parameters obtained by a

fit with our full model.

Figure 3.4 shows that this eccentricity-driven model of Ferry–Porter luminance scaling models

not only the slope variation over the retina but also the sensitivity difference over range of fs well

(degree-of-freedom-adjusted R2 = 0.950).
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3.3 Model Validation

Our eccentricity-dependent spatio-temporal model is unique in that it allows us to predict what

temporal information may be imperceptible for a certain eccentricity and spatial frequency. One

possible application for such a model is in the development of new perceptual video quality assess-

ment metrics (VQMs). Used to guide the development of different video codecs, encoders, encoding

settings, or transmission variants, such metrics aim to predict subjective video quality as experienced

by users. While it is commonly known that many existing metrics, such as peak signal-to-noise ratio

(PSNR) and structural similarity index metric (SSIM), do not capture many eccentricity-dependent

spatio-temporal aspects of human vision well, in this section we discuss a user study we conducted

which shows that our model could help better differentiate perceivable and non-perceivable spatio-

temporal artifacts. Furthermore, we also use the study to test the fit derived in the previous section,

showing that our model makes valid predictions for different users and points beyond those measured

in our first user study.

The study was conducted using our custom high-speed VR display with 18 participants, 13 of

which did not participate in the previous user study. Users were presented with videos, made up of a

single image frame perturbed by Gabor wavelet(s) such that when modulated at a frequency above

the CFF they become indistinguishable from the background image. Twenty-two unique videos were

tested, where the user was asked to rank the quality of the video from 1 (“bad”) to 5 (“excellent”).

We then calculate the difference mean opinion score (DMOS) per stimulus, as described in detail

by Seshadrinathan et al. [192], and 3 VQMs, namely PSNR, SSIM and one of the most influential

metrics used today for traditional contents: the Video Multimethod Assessment Fusion (VMAF)

metric developed by Netflix [193]. The results of which are shown in Figure 3.5. We acknowledge

that neither of these metrics has been designed to specifically capture the effects we measure. This

often results in uniform scores across the stimuli range (see e.g. Figure 3.5 III). We include them

into our comparison to illustrate these limits and the need for future research in this direction.

The last row shows a comparison of all measured DMOS values with each of the standard VQMs

and our own flicker quality predictor. This is a simple binary metric that assigns videos outside of

the CFF volume where flicker is invisible a good label while it assigns a bad label to others. Our

full Ψ(e, fs) model was used for this purpose. We computed Pearson Linear Correlation Coefficients

(PLCC) between DMOS and each of the metrics while taking into account their semantics. Only our

method exhibits statistically significant correlation with the user scores (r(20) = 0.988, p < 0.001

from a two-tail t-test).

Further, we broke our stimuli into 5 groups to test the ability of our model to predict more

granular effects.

1. Unseen stimulus. We select e = 30◦ and fs = 1.00 cpd, a configuration not used to fit the

model, and show that users rate the video to be of poorer quality (lower DMOS) when it is
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modulated at a frequency lower than the predicted CFF (see panel I in Figure 3.5).

2. fs dependence. We test whether our model captures spatio-temporal dependence. Lowering

fs with fixed radius makes the flicker visible, despite not changing ft (panel II).

3. e change. By moving the fixation point towards the outer edges of the screen, thereby increasing

e, we show that our model captures and predicts the higher temporal sensitivity of the mid-

periphery. Furthermore, by moving the fixation point in both nasal and temporal directions,

we validate the assumed symmetry of the CFF. As a result, users were able to notice flicker

that was previously imperceptible in the fovea (panel III).

4. Direction independence. We confirm our assumption that sensitivity is approximately rota-

tionally symmetric around the fovea. A single visible stimulus from Group 1 was also added

for the analysis as a control (panel IV).

5. Mixed stimuli. We show that the model predictions hold up even with concurrent viewing of

several stimuli of different sizes, eccentricities and spatial frequencies (panel V).

The perturbation applied to the videos in Groups 1–3 only varied in modulation frequency or

eccentricity with respect to a moving gaze position. In response, the dependency of other metrics

on ft is on the level of noise, since changes related to variation of ft or fs of a fixed-size wavelet

average out over several frames, and moving the gaze position does not change the frames at all.

Our metric is able to capture the perceptual effect, maintaining significant correlation with DMOS

(r(3) = 0.994, p = 0.001, r(2) = 0.983, p < 0.05 and r(3) = 0.977, p < 0.001 respectively).

Groups 4 and 5 were designed to be accumulating sets of Gabor wavelets, but all with param-

eters that our model predicts as imperceptible. We observe that VQMs drop with increasing total

distortion area, while the DMOS scores stay relatively constant and significantly correlated with our

metric (r(2) = 1.000, p < 0.001 and r(3) = 0.993, p < 0.01 respectively). These results indicate

that existing compression schemes may be able to utilize more degrees of freedom to achieve higher

compression, without seeing a drop in the typical metrics used to track perceived visual quality.

The exact list of chosen parameters, along with the CFFs predicted by our model are listed in

Appendix A.4.

In conclusion, the study shows that our metric predicts visibility of temporal flicker for indepen-

dently varying spatial frequencies and retinal eccentricities. While existing image and video quality

metrics are important for predicting other visual artifacts, our method is a novel addition in this

space that significantly improves perceptual validity of quality predictions for temporally varying

content. In this way, we also show that our model may enable existing compression schemes to utilize

more degrees of freedom to achieve higher compression, without compromising several conventional

VQMs.
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Figure 3.5: Results of our validation study. Each row represents one of the 5 tested effects along with
a cumulative plot in the last row. Results of different metrics (vertical columns) are compared to DMOS
(right column). Each bar represents the score for one stimulus rescaled so that a higher bar indicates a
better quality. PLCC of each metric and DMOS are shown along the p-values (t-test). (*) and (**) mark
statistical significance at p = 0.05 and p = 0.001 levels respectively.

3.4 Analyzing Bandwidth Considerations

Our eccentricity-dependent spatio-temporal flicker fusion model defines the gamut of visual signals

perceivable to the HVS. Hence any signal outside of this gamut can be removed to save bandwidth in

computation or data transmission. In this section we provide a theoretical analysis of the compression

gain factors this model may potentially enable for foveated graphics applications when used to

allocate resources such as bandwidth. In practice, developing foveated rendering and compression

algorithms holds other nuanced challenges and thus the reported gains represent an upper bound.

To efficiently apply our model, a video signal should be described by a decomposition into
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Figure 3.6: Compression gain analysis as a fraction of original and retained decomposition coefficients
depending on the screen pixel density (left and right plots) and the covered visual field (horizontal axis).
Note the difference in the gain axes scales.

spatial frequencies, retinal eccentricities, and temporal frequencies. We consider discrete wavelet

decompositions (DWT) as a suitable candidate because these naturally decompose a signal into

eccentricity-localized spatio-temporal frequency bands. Additionally, the multitude of filter scales

in the hierarchical decomposition closely resembles scale orders in our study stimuli.

For the purpose of this thought experiment, we use a biorthogonal Haar wavelet, which, for a

signal of length N , results in log2(N) hierarchical planes of recursively halving lengths. The total

number of resulting coefficients is the same as the input size. From there our baseline is retaining

the entire original set of coefficients yielding compression gain of 1.

For traditional spatial-only foveation, we process each frame independently and after a 2D DWT

we remove coefficients outside of the acuity limit. We compute eccentricity assuming gaze in the

center of the screen and reject coefficients for which Ψ(e, fs) = 0. From our model definition, such

signals cannot be perceived regardless of ft as they lie outside of the vision acuity gamut. The

resulting compression gain compared to the baseline can be seen for various display configurations

in Figure 3.6.

Next, for our model we follow the same procedure but we additionally decompose each coefficient

of the spatial DWT using 1D temporal DWT. This yields an additional set of temporal coefficients

ft and we discard all values with Ψ(e, fs) < ft.

For this experiment, we assume a screen with the same peak luminance of 380 cd/m2 as our

display prototype and a pixel density of 60 pixel per degree (peak fs = 30 cpd) for approximately

retinal display or a fifth of that for a display closer to existing VR systems. The tested aspect ratio of

165:135 approximates the human binocular visual field [29]. We consider displays with a maximum

framerate of 100 Hz (peak reproducible ft = 50 Hz) and 200 Hz, capable of reaching the maximum

CFF in our model. The conventional spatial-only foveation algorithm is not affected by this choice.

Figure 3.6 shows that this significantly improves compression for both small and large FOV

displays regardless of pixel density. This is because the spatial-only compression needs to retain all
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temporal coefficients in order to prevent the worst-scenario flicker at e and fs with highest CFF.

Therefore, it only discards signal components in the horizontal e × fs plane. On the other hand,

our scheme allows to also discard signal in the third temporal dimension closely copying the shape

of the Ψ which allows to reduce retained ft for both fovea and far periphery in particular for high

fs coefficients which require the largest bandwidth.

3.5 Discussion

The experimental data we measure and the models we fit to them further our understanding of

human perception and lay the foundation of future spatio-temporal foveated graphics techniques.

Yet, several important questions remain to be discussed.

Limitations and Future Work First, our data and model work with CFF, not the CSF. CFF

models the temporal thresholds at which a visual stimulus is predicted to become (in)visible. Unlike

the CSF, however, this binary value of visible/invisible does not model relative sensitivity. This

makes it not straightforward to apply the CFF directly as an error metric, for example to optimize

foveated rendering or compression algorithms. Obtaining an eccentricity-dependent model for the

spatio-temporal CSF is an important goal for future work, yet it requires a dense sampling of the

full 3D space spanned by eccentricity, spatial frequency, and time with user studies. The CFF, on

the other hand only requires us to determine a single threshold for the 2D space of eccentricity and

spatial frequency. Considering that obtaining all 18 sampling points in our 2D space for a single

user already takes about 90 minutes, motivates the development of a more scalable approach to

obtaining the required data in the future.

Although we validate the linear trends of luminance-dependent behavior of the CFF predicted

by the Ferry–Porter law, it would be desirable to record more users for larger luminance ranges and

more densely spaced points in the 2D sampling space. Again, this would require a significantly larger

amount of user studies, which seems outside the scope of this work. Similarly, we extrapolate our

model for fs above the 2 cpd limit of our display. Future work may utilize advancements in display

technology or additional optics to confirm the model extension. We also map the spatio-temporal

thresholds only for monocular viewing conditions. Some studies have suggested that such visual

constraint lowers the measured CFF in comparison to binocular viewing [194,195]. Further work is

required to confirm the significance of such an effect in the context of displays.

It should also be noted that our model assumes a specific fixation point. We did not account

for the dynamics of ocular motion, which may be interesting for future explorations. By simplifying

temporal perception to be equivalent to the temporal resolution of the visual system we also do

not account for effects caused by our pattern sensitive system, such as our ability to detect spatio-

temporal changes like local movements or deformations. Similarly, we do not model the effects of
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crowding in the periphery, which has been shown to dominate spatial resolution in pattern recog-

nition [196]. Finally, all of our data is measured for the green color channel of our display and

our model assumes rotational invariance as well as orientation independence of the stimulus. A

more nuanced model that studies variations in these dimensions may be valuable future work. All

these considerations should be taken into account when developing practical compression algorithms,

which is a task beyond the scope of this paper.

Finally, we validate that existing error metrics, such as PSNR, SSIM, and VMAF, do not ade-

quately model the temporal aspects of human vision. The correlation between our CFF data and

the DMOS of human observers is significantly stronger, motivating error metrics that better model

these temporal aspects. Yet, we do not develop such an error metric nor do we propose practical

foveated compression or rendering schemes that directly exploit our CFF data. These investigations

are directions of future research.

DMOS

DMOS

Ours (r=0.99, p<0.01**)

Ours (r=0.98, p<0.016*)

Mantiuk (r=0.97, p<0.01**)

Mantiuk (r=0.96, p<0.038*)

Figure 3.7: Mantiuk et al. [56] adapted a flicker detection flicker algorithm [197] using their unified CSF
model, stelaCSF, to compared against the results of our validation study (Section A.4). The top row shows
condition I, unseen stimulus, where a fixed Gabor is presented flickering at various frequencies. The bottom
row shows condition II, fs dependence, where flickering Gabors of fixed size but varying spatial frequency
are shown at a single temporal frequency. They reproduce the mean DMOS score of the user study on the
left, show the results obtained by our model in the center, and then the results of their modified algorithm
on the right. Image adapted from Mantiuk et al. [56].

New Developments Since this work was published, we’ve seen a high interest and more re-

searchers inspired to build even more comprehensive models. In particular, Mantiuk et al. [56]

proposed the first unified CSF model, StelaCSF, which accounts for all major dimensions of the

stimulus: spatial and temporal frequency, eccentricity, luminance, and area by combining data from

several previous papers. Unlike our model, the CSF can model relative sensitivity, rather than just

binary visibility. In their analysis, the authors use their model to modify the flicker predictor by

Denes and Mantiuk [197] to compare against the prediction of our model. As shown in Figure 3.7,
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with the introduction of stelaCSF, the algorithm is able to accurately predict the detection of flicker

for the conditions studied in our validation experiment (Section 3.3).

3.6 Summary

At the convergence of applied vision science, computer graphics, and wearable computing systems

design, foveated graphics techniques will play an increasingly important role in emerging VR and

AR display systems. With our work, we hope to contribute a valuable foundation to this field that

helps spur follow-on work exploiting the particular characteristics of human vision we model.



Chapter 4

Towards Attention-aware Foveated

Rendering

Foveated graphics present a promising solution to the bandwidth challenges preventing perceptually

realistic VR and AR displays. As we describe in the previous chapter, these techniques have the

potential to achieve higher gain factors by exploiting not just limitations in spatial sensitivity across

the retina, but also other limitations of the HVS. For instance, the fact that our perceptual abilities

also depend on higher-level cognitive processing. In fact we rarely see what we are looking at

unless we direct sufficient cognitive resources [198], explaining many phenomena including change

blindness [90]. Visual attention refers to a set of cognitive operations that helps us selectively

process the vast amounts of information with which we are confronted, allowing us to focus on a

certain location or aspect of the visual scene, while ignoring others [89]. Most often, we direct our

attention overtly, by moving our eyes towards a location, but we can also direct attention to an

area in the periphery covertly, via a mental shift. As described in Chapter 2, several studies have

demonstrated that, under many conditions, increasing the amount of attention allocated to a visual

task can enhance performance [94, 95]. In a similar manner, dividing attention between tasks can

reduce visual peformance, resulting in lower contrast sensitivity [96,97], visual acuity [98], and speed

of information accrual [99].

However, as illustrated in Figure 4.1, existing models of contrast sensitivity and visual acuity

across the visual field are built on experiments where subjects are asked to covertly direct high levels

of visual attention to a discrimination task in the periphery. Thus, for most scenarios in the real

world, as well as VR and AR, where most of our attention is directed overtly (at our gaze position),

we are likely overestimating our perceptual abilities in the periphery. Consequently, current efficacies

of foveated graphics are too conservative in most real-use cases.

41
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little attention at gaze position

most attention allocated here

Figure 4.1: Existing eccentricity-dependent CSF models are built on experiments where users maintain
central fixation, but covertly direct most of their attention to the discrimination task in the periphery. The
size and intensity of the spotlights illustrate visual attention distribution.

In this chapter, we propose to account for the effect of covert attention when modeling human

contrast sensitivity. To this goal, we investigate the effect of modulating the amount of attention

allocated to the contrast discrimination task in the periphery, by forcing attention to the fovea with

a visually demanding task. Specifically, we compare the standard approach to measuring contrast

sensitivity, where a low amount of attention is directed to the fovea (“low” ), to scenarios where

part or most of the attention is directed there (“medium” and “high” ). As illustrated on the left

of Figure 4.2, we show that in such instances, peripheral contrast discrimination thresholds elevate

significantly and introduce the first attention-aware CSF model. Furthermore, we motivate the

development of future foveation models with another user study, demonstrating that tolerance for

foveation (i.e., peripheral blur) is significantly higher when the user is concentrating on a task in the

fovea (illustrated on the right of Figure 4.2). Analysis of our model predicts potential bandwidth

savings over 7 times higher than those afforded by current models.

Specifically, in this chapter we: (1) design and conduct user studies to measure and validate

eccentricity-dependent effects of attention on contrast discrimination and foveation efficacy, (2)

introduce the first analytic model of contrast sensitivity across eccentricity under varying attention,

and (3) analyze bandwidth considerations and demonstrate that our model may afford significant

bandwidth savings over existing foveated graphics techniques.
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Figure 4.2: Foveated graphics techniques rely on eccentricity-dependent models of human vision. However,
existing models of contrast sensitivity (left, purple line, shown for a fixed eccentricity) do not take into
account allocation of visual attention across the visual field. Our work is the first to experimentally derive
a model for eccentricity-dependent attention-aware sensitivity (left, yellow line). As illustrated on the right,
when the user is focused on a task in the fovea, less attention is directed to the periphery and a higher level
of foveation (i.e., peripheral blur) is possible without impacting the perceived visual quality. (City image by
Pok Pie from Pexels: https://www.pexels.com/photo/4847105/)

4.1 A Model for CSF under Divided Attention

While modulating the amount of attention has been shown to affect contrast discrimination thresh-

olds (see Section 2.1.7), insufficient data and a lack of existing models prevent this effect from being

applied to existing CSF models and hence foveated graphics. In this section, we provide a detailed

discussion of the user study we conducted and the model we fit to predict the effect of modulating

peripheral attention on the CSF.

4.1.1 Measuring CSF

Similar to Chapter 4, the CSF model we wish to acquire could be parameterized by temporal

frequency, spatial frequency, rotation angle, eccentricity (i.e., distance from the fovea), direction

from the fovea (i.e., temporal, nasal, etc.) and other parameters. Here, we make the sampling

tractable by nominally select 3 points across the eccentricity (e) available with our display (see

Section 4.1.3), a spatial frequency (fs) of 2 cpd, and a diameter of 5◦ for the furthest point. We

then use the cortical magnification factor to scale the spatial frequencies and diameters at the other

retinal positions (see stimuli No. 1–3 in Table 4.1) such that the discrimination thresholds should

be approximately the same (see Appendix B.1 for more detail).

In order to obtain the contrast discrimination thresholds, we use the standard approach described

in Chapter 2, including use of 2D Gabor wavelets. A detailed description of this stimuli is included

in Section 2.1.5. During each trial, two wavelets are simultaneously presented for 500 ms, centered

at a given eccentricity, to the left and right side of the central fixation position. Each grating is

randomly orientated either horizontally or vertically and the user is asked to discriminate whether

the wavelets are of the same or different orientations.
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Table 4.1: Parameters of tested Gabor patches. For measuring the model (shown above the divider), we
chose a diameter of 5◦ at the highest eccentricity of 21◦ to utilize the full field of view of our display and
a spatial frequency fs of 2 cpd, then use the cortical magnification factor to scale these parameters at 7◦

and 14◦ eccentricity. Gabor’s sigma was defined as 20% of the diameter. For validation, we chose 2 sets
of Gabor parameters (shown below the divider) used to fit StelaCSF [56], namely measurements taken by
Virsu and Rovamo [62] and Wright and Johnson [199]. Stimulus No. 5 was also tested at two additional
adaption luminances, 58 and 116 cd/m2 (No. 6 and 7).

No.
Eccentricity

(◦)

Diameter

(◦)

Spatial

Freq. (cpd)

Adaptation

Lum. (cd/m2)

1 7 2.16 4.62 28

2 14 3.58 2.79 28

3 21 5 2 28

4 9.25 1.7 2 28

5 15 5 4 28

6 15 5 4 58

7 15 5 4 116

4.1.2 The Attention-modulating Task

Inspired by Huang and Dobkins [97], we present a rapid serial visual presentation (RSVP) at the

fixation cross in order to modulate the amount of attention paid to the peripheral contrast discrimi-

nation task. The RSVP stimulus consists of N 1◦×1◦ letters, each lasting 500/N ms with 0 ms blank

in between, such that the task lasts the total display duration of the peripheral Gabor wavelets. The

color of the letters alternate between red and green (scaled to be approximately isoluminant with the

background), where the initial color is randomized across trials, and the user is asked to identify the

color of the “target letter” (the letter “T”, which appears only once in a given sequence). Increasing

N increases the difficulty of the task and should force more attention to the fovea, at the cost of

reduced attention to the periphery. Consequently, three task levels were chosen to have an N of 1

(easy), 4 (medium) and 6 (hard), to force “low” , “medium” , and “high” levels of attention to the

fovea. The target letter “T” was also adjusted such that for the “medium” and “high” attention

tasks it would not appear in the first 3rd of letters to avoid users obtaining the color early enough

to shift their attention to the periphery before the trial ended.
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4.1.3 User Study

Setup Due to the need to display high resolution stimuli across a wide field of view, we conduct our

study using a 34 inch, 144 Hz Dell Curved Gaming Monitor (Model No. S3422DWG, see Figure 4.3).

This display has an adjustable backlight, allowing us to tune luminance. For this study we use a

setting that gives a minimum and maximum luminance of 0.6 cd/m2 and 104 cd/m2, respectively,

and a gamma of 1.89. The neutral gray background triggered luminance adaptation to 28 cd/m2.

A 2×2 spatial dithering was used to avoid visible color banding in the low-contrast stimuli. We

used Python’s PsychoPy toolbox [180] and a custom shader to stream frames to the display by

wired HDMI connection. All subjects were tested in a well-lit room and viewed the video display

binocularly from an SR Research headrest situated 94 cm away, thus giving a field of view of 46◦×20◦

and a resolution of 71 ppd (pixels per degree of visual angle). Pupil Labs Core eye trackers were

mounted to the headrest to verify central gaze fixation throughout all studies (see Section 2.2.1 for

specifications).

T

Figure 4.3: Our setup for measuring contrast thresholds under differing attention conditions. A photograph
of the user study setup is shown on the left. An enlarged illustration of the stimulus on the screen (outlined
in red) is shown on the right. The central RSVP letter task with the Gabor wavelets centered at e to the
left and right. The brightness of the letter “T” and the contrasts of the Gabors have been exaggerated for
visibility.

Subjects Ten adults participated (age range 23–29, 2 female). Due to the demanding nature of

our psychophysical experiment, only a few subjects were recruited, which is common for similar low-

level psychophysics (see e.g. [13]). All subjects in this and subsequent experiments had normal or

corrected-to-normal vision, no history of visual deficiency, and no color blindness, but were not tested

for peripheral-specific abnormalities. All subjects gave informed consent. The research protocol was

approved by the Institutional Review Board at Stanford University.

Procedure To begin the study, subjects were set up in a comfortable position on the headrest

and the eye tracker was calibrated using a 5-point screen calibration [200]. The thresholds for each

contrast condition (stimuli No. 1–3 in Table 4.1) was then estimated in a random order. For each

condition, a two-alternative forced-choice (2AFC) adaptive staircase designed using QUEST [187]
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was used to measure the contrast discrimination threshold for each attention condition, starting with

the “low” , then the “medium” and ending with the “high” foveal attention condition. At each step,

the subject was shown a small (1◦) white fixation cross for 1.2 s to indicate where they should fixate,

followed by the attention-modulating task and contrast stimuli for 500 ms, then a Gaussian white

noise screen for 1 s (to reduce after images). The subject was then given 10 s to indicate via different

sets of marked buttons on a keyboard whether the target letter “T” was red or green, followed by

whether the contrast patterns were of the same or different orientations. If the subject failed to

answer during that time, the trial would be replayed. Each of the 3 test conditions at each of the 3

attention conditions were tested twice per subject, taking approximately 90 minutes, with subjects

encouraged to take breaks between staircases.

Results Mean contrast thresholds across subjects are shown in Figure 4.4a (see Appendix B.2 for

a table of mean measured values). It can be seen that the contrast thresholds are almost identical for

the “low” attention condition, agreeing with the theory of cortical magnification described by Virsu

and Rovamo [62, 201]. For the “medium” attention condition, however, the contrast thresholds do

increase significantly with eccentricity (p < 0.05, paired t-test between neighboring eccentricities),

almost 2× for 7◦ and over 3× for 21◦ (see Figure 4.4b). Similarly, the “high” attention condition

exhibits up to 4× threshold increase within our measured eccentricity range (p < 0.05). The increase

in gain factors with eccentricity is consistent with work by Staugaard et al. [202] who showed a

decrease in attentional capacity with increasing stimulus eccentricity, when stimuli are scaled in

size to account for cortical magnification. Furthermore, we observe significant differences between

individual attention modes across the eccentricity ranges (p < 0.01 for most pairs, p < 0.05 for

the “medium” and “high” attention, paired t-test with Bonferroni correction). This confirms our

assumption that increasing the task difficulty will shift attention towards the fovea at a cost to

sensitivity in the periphery. On the other hand, despite the considerable difference between the

“low” and “medium” condition gradients, the gradients of the “medium” and “high” conditions are

surprisingly similar, suggesting that the effect of attention modulation is non-linear.

4.1.4 Per-condition Model

The observed increase in thresholds for larger eccentricities is nearly linear with a small distortion

which we describe using the square root of eccentricity to fit attention-dependent contrast threshold

models:

ta(e) = p0
√
e + p1 (4.1)

where a is denotes one of our foveal attention conditions (“low” , “medium” or “high” ). See Fig-

ure 4.4a for plots and Table 4.2 for parameters.

As contrast sensitivity varies among observers, we are primarily interested in the relative atten-

tion gain represented by threshold elevations defined with respect to the “low” attention baseline
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Table 4.2: Fitted parameters of our attention-aware contrast threshold model ta(e). R2 is the coefficient
of determination.

a p0 p1 R2

“low” 9.672 · 10−4 2.741 · 10−2 0.705

“medium” 2.737 · 10−2 −1.620 · 10−2 1.000

“high” 2.714 · 10−2 1.612 · 10−2 0.956

condition as:

ga(e) =
ta(e)

tlow(e)
(4.2)

Assuming orthogonality of the attention effect and other independent parameters of the stimulus,

we can formulate the attention-aware contrast sensitivity as:

Sa(e, · · ·) = S(e, · · ·) 1

ga(e)
(4.3)

where S is any of the CSF models discussed in Chapter 2 (Section 2.1.5). In Section 4.1.6 we use

the StelaCSF [56] model.
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Figure 4.4: Main study: (a) The mean measured contrast thresholds and the fitted attention curves for
the per-condition model ta(e) (Equation 4.1, full lines) and the unified model t(e, ac) (Equation 4.4, dotted
lines). The horizontal bars display extent of the Gabors. The vertical error bars show standard error. (b)
A continuous attention-eccentricity fit of the unified model t(e, ac) (Equation 4.4). (c) The attention gains
ga(e) relative to the “low” foveal attention condition computed for each of the two models.

4.1.5 Unified model

Additionally, we explore a speculative model unifying the eccentricity e with a continuous interpre-

tation of the attention condition ac ∈ [0, 1] where {“low”→ 0, “medium”→ 0.5, “high”→ 1}. We

design this model as an attention-dependent sweep between the per-attention curves, parameterized
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relative to our lowest eccentricity of 7◦. We model the dependency for the slope and intercept sepa-

rately using two gamma curves aγs
c and aγi

c to account for the non-linear perception of the different

attention conditions. Due to the extreme non-linearity of the slope development we constrain γs to

0.5 and fit:

t(e, ac) = Ψ (s0, s1, a
γs
c ) ·

(√
e−

√
7
)

+ Ψ (i0, i1, a
γi
c ) (4.4)

to our measured data. Here, {s0, s1, i0, i1, γi} = {0.00243, 0.0307, 0.0285, 0.0844, 0.771} are the

fitted parameters (DoF-adjusted R2 = 0.973) and Ψ(α, β, w) = α(1−w)+βw is a linear interpolation

function.

We compare the resulting unified model (shown in Figure 4.4b) to our per-condition models

ta(e) (in Figure 4.4a). Despite the lower parameter count, the unified model fits the measured

data within the measurement errors. While the unified model allows for convenient interpolation,

we argue for fitting task-specific models in practice, because the connection between the task and

attention is highly individual and not well understood. Hence, we use our per-condition models ta(e)

(Equation 4.1) throughout the rest of this paper wherever not explicitly specified otherwise.

4.1.6 Validation Experiments

In Equation 4.3, we apply attention correction as a multiplicative factor under an assumption of

orthogonality between the two functions. If this assumption holds, the difference between new thresh-

olds predicted by our model and their measured values should be low. We test this by measuring the

attention gains for four new stimuli with a different cortical magnification and adaptation luminance

levels than in our main study. We then compare the thresholds obtained by direct measurement

with the thresholds predicted by our attention gain ga(e).

Experiment We use the same experiment procedure as for the main study, except with two

parameter sets used to fit StelaCSF [56], a recently demonstrated unified model of CSF (see stimuli

No. 4 and 5 in Table 4.1). These points were selected from the only 2 datasets measured using

stationary stimuli outside the fovea, with spatial frequency, eccentricity and size as different as

possible to the stimuli used to fit our attention-aware CSF model. Additionally, we test effect of

varying luminance adaptation on one of these datapoints by adjusting the backlight of our display

(see stimuli No. 6 and 7) .

Subjects Eleven adults participated (age range 23-29, 5 female), six for stimuli No. 4 and 5 and

five for stimuli No. 6 and 7. Only three of these subjects participated in the main study.

Results We measured mean thresholds for the validation stimuli (No. 4–7) and the “low” attention

condition as 0.032, 0.045, 0.57 and 0.51, which we use as baselines for a relative multiplicative ad-

justment of our measurements to corresponding predictions of StelaCSF. We compute Interquartile
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Range (IQR) of this multiplicative factor to detect outliers. We treat each of the 2 per-user repeti-

tions as a single data sample and we remove a total of 3 strong outliers with offset of 4 or more IQR

from the quartiles. We then apply this base adjustment consistently to all individual measurements

to remove variability of the base sensitivity performance among users and instead focus on relative

gains between attention conditions (see Figure 4.5b). The resulting adjusted measurements are then

compared with the contrasts predicted by the original attention-unaware StelaCSF model and our

derived attention-aware CSF model Sa(e, · · ·). We compute the error of both models in Figure 4.5c.
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Figure 4.5: Validation studies: (a) Two different views of an eccentricity vs. spatial frequency plot for the
original StelaCSF [56] model (the top surface, in purple) and our scaled models Smedium(e, fs) (in magenta),
Shigh(e, fs) (in yellow) for a static stimulus with an area of 1 deg2 and an adaptation luminance of 28 cd/m2

(same as our model study in Section 4.1.3). (b) Slices of the same models describing dependency on spatial
frequency for the conditions used in our validation study (see No. 4–7 in Table 4.1). The points denote
directly measured sensitivities scaled relative to the baseline. The bars are 95% confidence intervals. (c)
Corresponding threshold prediction errors of StelaCSF vs. our model (lower is better). The error bars
are 95% confidence intervals and significance is indicated at the p < 0.05 and 0.01 levels with * and **
respectively (Wilcoxon test).

For the 2 stimuli isoluminant with our model data (No. 4 and 5), we observe statistically

significantly lower error between our and the original StelaCSF predictions with respect to the ex-

perimentally measured thresholds in all conditions except for one. The lower observed difference

between “low” and “medium” attention for the lower frequency stimulus (No. 4) points to an over-

estimation of the gain by our model here. Notably, even in this worst case, the prediction error is

still lower than that of the baseline StelaCSF.

As a practical example, our measurements indicate that with “high” attention and a 28 cd/m2

display, a spatial pattern with fs = 2 cpd shown at eccentricity of 15◦ will be just discriminable if

rendered with an amplitude value of 32 (for a 0–255 signal range of an 8-bit display with gamma

of 2.2) while our model would yield amplitude of 30 and the baseline model would adhere to the

original stelaCSF prediction of amplitude 8.

The favorable performance of our model also holds for the other 2 luminance levels (stimuli No. 6
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and 7). Despite this, we observe a trend of attention gain reduction with increasing luminance which

is significant for the “medium” attention at 116 cd/m2 (ga : 3.03 → 2.15, p < 0.05, Mann-Whitney

U test) and “high” attention at 58 cd/m2 (ga : 4.12 → 3.37). This compression could be caused by

the overall increase of sensitivity under such conditions and should be considered by users of our

model.

To summarize, our experiment suggests that while the assumption of full orthogonality is unlikely

to hold everywhere, the relative benefit of including the attention model may still be stronger relative

to the cost of this simplification.

4.2 Attention-aware Foveated Rendering

The goal of foveated rendering is to reduce computational cost without introducing perceptible

artifacts by exploiting the reduction of vision performance in the periphery, typically by adjusting

sampling rate with respect to peripheral acuity drop (see Chapter 2, Section 2.2.2 for a review of

these techniques). The quality of such foveation can be assessed by visual difference predictors,

for example, FovVideoVDP [73], a state-of-the-art metric that models the spatial, temporal, and

peripheral aspects of perception. In this section, we experimentally validate whether integration

of our attention-aware perceptual model improves the performance of FovVideoVDP in predicting

visibility of foveation artifacts under varying attention conditions. To that end, we emulate a simple

foveated renderer and we separately calibrate the foveation intensity for three different attention

regimes in a user study. We then compare the perceptual errors of the calibrated stimuli predicted

by FovVideoVDP with and without our attention-aware model to assess their agreement with human

judgment.

4.2.1 Measuring Imperceptible Foveation

Similar to the contrast discrimination task in Section 4.1, we create a space-multiplexed comparison

of foveated images. In particular, we split the screen into left and right sides, apply foveation to one

side only (randomly selected) and ask subjects which of the sides appeared more visually degraded

(see Figure 4.6a for an illustration). Then, by modifying the parameters of the foveated side, we

can find the threshold for which the foveation is nearly imperceptible to the subject. The central

transition around the fixation was replaced by a neutral background vertical bar with 6◦ width and

Gaussian fall-off (standard deviation of 0.5◦) and the attention-modulating RSVP task used in the

previous studies, was then displayed centrally.
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For the foveation, we base our approach on the work of Guenter et al. [12] (described in Chapter 2,

Section 2.2.2) and the linear MAR model (described in Section 2.1.4) describing the reciprocal of

acuity as:

ω(e) = me + ω0 (4.5)

where the bias ω0 = 1/48◦, as in the original work, and the slope m is a free variable measured

as a threshold in our study. Rather than choosing three distinct layers, the peripheral resolution

decrease was simulated as a continuous function of eccentricity by an approximated Gaussian filter

with spatially varying standard deviation:

σ(e) =
ω/ωs − 1

2σc
(4.6)

where ωs = 0.0283◦ is the peak MAR of our display and σc = 2 is the chosen cut-off determining

the assumed bandwidth of the filter. Note that this particular choice primarily affects the absolute

value of our slopes and not the relative ratios between conditions.

4.2.2 User Study

Setup We used the same experimental setup as in Section 4.1. The stimuli consisted of one of

four foveated images displayed across the entire screen with the gaze fixation directed to the center.

Subjects Thirty adults participated (age range 23–29, 10 female). Subjects were first shown the

original images, to avoid exploratory saccades during the study, and then shown an example of the

foveation effect.

Procedure As in the studies in Section 4.1, subjects were instructed to always fixate on the

central RSVP task and observe the foveation task concurrently in their periphery. The thresholds

for each image were estimated in a random order for each subject. For each image, a 2-AFC

adaptive staircase using QUEST [187] was used to measure the threshold of the foveation slope m

for each attention condition, starting with the “low” , followed by the “medium” and ending with

the “high” foveal attention condition. Similar to the previous studies, at each step, the subject is

shown the attention-modulating task and foveation detection task for 500 ms. The subject then

indicated the color of the target letter “T”, and if correct, were asked which side of the image (left

or right) was more visually degraded. Whenever the subject incorrectly answered the RSVP task,

they were forced to start the step again. Each subject viewed 2 images, either “Tulips” and “City”

or “Mountain” and “Forest” (see Figure 4.6a) at each of the 3 attention conditions, to keep the

study duration to approximately 45 minutes (including breaks).
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Figure 4.6: Foveation study: (a) Stimuli from our study showing the attention-modulating RSVP task
in fovea and the peripheral foveation detection task. One side (randomly selected) is foveated while the
other is left at full resolution. The foveation effect and the color and size of the RSVP task are exag-
gerated for visibility. (b) Quality scores predicted by the original FovVideoVDP metric vs. our modi-
fied predictor (closer to Measured is better) for the foveated images calibrated in our user study. The
error bars show 95% confidence intervals. The Measured quality refers to the actual quality threshold
measured in the “low” condition. (c) Comparison of visual difference maps produced by the original
FovVideoVDP metric vs. our modified predictor for the calibrated MAR slopes. Colors visualize Just-
Objectionable-Differences (JOD) with respect to the original “Tulips” and “Mountain” images (small sec-
tion from the right periphery shown). (d) Comparison of MAR slopes (intensities) predicted by the original
FovVideoVDP metric vs. our modified predictor for each image compared to the Measured slopes (closer
to Measured is better). The legend is shared with panel (b). The error bars show 95% confidence in-
tervals of the measured values. Note that the model-based slope predictors do not yield variance (no er-
ror bars shown). (Tulips image by Alex Ohan from Pexels: https://www.pexels.com/photo/11644862/,
City image by Pok Rie: https://www.pexels.com/photo/4847105/, Mountain image by Archie Bi-
namira from Pexels: https://www.pexels.com/photo/672451/ and Forest by Blender Foundation from:
https://peach.blender.org/about/)

Results In Figure 4.6d, we show the measured MAR slopes m averaged across the users (labeled

“Measured”). We applied the same IQR procedure as in Section 4.1.6 but we did not detect any

outliers. As expected, for all images the slope significantly increases (p < 0.001, paired t-test

with Bonferroni correction) for both “medium” and “high” compared to “low” attention conditions.

This means that a more aggressive foveation becomes acceptable as attention shifts from periphery

towards the fovea. Furthermore, we note that there are statistically significant differences between

slopes measured for at least some image pairs with “low” (one-way ANOVA, F (3, 116) = 4.99,

p = 0.003), “medium” (F (3, 116) = 10.26, p < 0.001) and “high” (F (3, 116) = 3.87, p = 0.011)

attention. This points to a content-dependent nature of the problem. In the next section, we discuss

whether a visual difference predictor could be used to predict foveation parameters for a specific

image.
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4.2.3 Foveated Quality Prediction

Setup Acuity-driven foveation algorithms conservatively account for the worst-case scenario of

the smallest detectable image detail [132]. As seen in our results, distribution of contrast in specific

images affects the acceptable foveation intensity. This is modeled by visual difference predictors

such as FovVideoVDP [73], which decomposes an image into spatio-temporal frequency bands and

models their visibility by utilizing the CSF and a contrast masking model. However, while explicitly

modeling retinal eccentricity, the original CSF does not account for attention. We experimentally

modify the authors’ implementation and integrate our model as an orthogonal scaling factor of the

CSF component. We then apply the original and the modified predictor to assess the quality of the

foveated images with the per-image calibrated slopes from Section 4.2.2. Furthermore, we evaluate

whether an inverse process could be used to optimize the foveation intensity.

Quality metric In Figure 4.6b, we display quality scores produced by the original FovVideo-

VDP metric compared to our modified predictor obtained by computing visual difference between a

foveated image calibrated by each individual subject and the full-quality reference. The scores were

averaged for each image, for each of the “medium” and “high” attention conditions. We compare

these to the expected value (labeled “Measured”) which was obtained by FovVideoVDP for foveated

images calibrated with the “low” attention condition. We assume that this represents the personal

subject-specific threshold of the perceived quality for the given image and that it should remain

constant under varying attention.

Following our previous results, we expect that images with larger objective degradation should

be judged as having equivalent quality and that a successful prediction should reflect that. Conse-

quently, we observe that the error measured as a relative difference between our prediction and the

“Measured” value is consistently lower than that for FovVideoVDP (p < 0.001, Wilcoxon test). This

suggests that our modified predictor is better aligned with the attention-modulated perception.

In Figure 4.6c, we additionally compare maps of Just-Objectionable-Differences (JOD) produced

by both predictors for the mean calibrated slopes at each condition. FovVideoVDP indicates a strong

increase of perceived artifacts even as attention towards the fovea (“high” attention condition). Our

method instead predicts errors on the boundary of visibility for all conditions which is consistent

with our assumption.

Finally, we note that the “low” attention score predicted by FovVideoVDP based on the directly

measured slopes is significantly different between at least some of the images (9.375 for “Tulips”,

8.383 for “City”, 9.470 for “Mountain” and 9.314 for “Forest”, F (3, 116) = 150.5, p < 0.001, one-

way ANOVA). Since this is the baseline condition, this discrepancy is orthogonal to our primary

objective of exploring the overall impact of attention, and thus we defer its investigation to future

work.
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MAR slope prediction The visual difference prediction potentially allows us to optimize foveation

parameters by posing it as a constrained problem:

Θ = arg min
Θ

C(Θ) subject to Q(Θ) ≥ Qthr (4.7)

where Θ is a set of rendering parameters, C(Θ) is the cost of the rendering (typically time and

power consumption), Q(Θ) is an image quality predictor and Qthr the required threshold. In our

case Θ = m, C(Θ) is a monotonically decreasing function of m, Q(Θ) is provided by our visual

difference predictor (with access to the reference image) and Qthr is obtained from the “low” foveal

attention condition in Section 4.2.2. The resulting problem of one variable can be efficiently solved

by bisection.

Ideally, we could use a single Qthr for any image. However, due to the significant difference

between “low” attention thresholds obtained for our images, we opt to use scene specific Qthr of

9.375 for “Tulips”, 8.383 for “City”, 9.470 for “Mountain” and 9.314 for “Forest”. This simulates

a correction function that calibrates the underlying predictor for content-dependent effects and

development of which is outside of the scope of this work.

Figure 4.6d compares the MAR slopes obtained by solving the inverse problem with Q(Θ) im-

plemented using the original FovVideoVDP metric and our modified predictor. While our predicted

slopes do not always match the directly measured values, for the “high” attention the errors are

consistently lower than those from FovVideoVDP (p < 0.05 for the “Mountain”, p < 0.01 for the

rest, non-parametric Wilcoxon test). This is remarkable given the large domain gap between the

model and foveation stimuli. It suggests that our model is useful for attention-aware foveated ren-

dering. Similarly, we observe statistically lower prediction errors of our model with the “medium”

attention for the “Tulips” and “City” images (p < 0.01) while no statistically significant differences

were measured for the rest.

The remaining error could originate from a multitude of sources, among them the orthogonal

assumption of CSF scaling as well as other higher level effects not accounted for in either model. To

illustrate the impact, in the worst case of the “City” image with “high” attention and the extreme

periphery of 46◦ in our experimental display setup, this error would lead to removal of spatial details

in the 0.25–0.35 cpd band which might be noticeable based on our measured data.

Importantly, we observe that the bias towards overestimation of the slopes is consistent. This

hints to feasibility of fine tuning for a specific foveation algorithm. Even without such treatment,

the relative preference of our model over the baseline is most prominent for the “high” attention

which is particularly relevant for many applications where users focus at a specific target on the

screen.
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4.2.4 Analyzing Bandwidth Considerations

In this section we analyze the additional computation gain that could theoretically be obtained

by using our attention-aware model when the user is focused on a task in the fovea. While we

could analyze the bandwidth by decomposing the image into frequency bands and discarding the

signal following the CSF predictions, we decided on a more conservative approach that instead uses

our direct perceptual measurements of vision performance under the specific foveal (RSVP) task.

Therefore, we model the foveation algorithm by Guenter et al. [12] together with the global mean

MAR slopes m obtained for the “low” , “medium” and “high” attention conditions as 0.0198, 0.0420

and 0.0596.

Unlike the discrete segmentation in the original algorithm, we simplify the analysis by assuming

that sampling rate of each pixel can be controlled independently and hence we directly map the local

MAR, ω(e) (Equation 4.5), to the computational gain Ψ derived from local areal sampling density

as:

Ψ(FOV) =

(∫
FOV

1 dx

)
·

(∫
FOV

max

(
ω(x)

ωs
, 1

)−2

dx

)−1

(4.8)

where ωs is the peak MAR of a given display with a 2D field of view FOV.

In Figure 4.7, we display computational gains obtained as a function of display FOV for a common

20 ppd and future high-density 60 ppd displays as an upper bound for the analyzed algorithm. It

must be noted that gains in real applications are influenced by efficiency of a particular renderer.

As our contributions are independent of such design choices, more advanced foveation approaches

such as noise-based enhancement [132] can be considered for additional gains.
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Figure 4.7: Computational gain analysis as a fraction of original and retained pixel sampling density
depending on pixel size and the covered visual field (horizontal axis). Note the difference in the gain axes
scales.



56 CHAPTER 4. TOWARDS ATTENTION-AWARE FOVEATED RENDERING

4.3 Discussion

The experimental data we measure and the models we fit to them further our understanding of

human perception and lay the foundation of future attention-aware foveated graphics techniques.

Yet, several important questions remain to be discussed.

Limitations and Future Work While our studies clearly demonstrate that modulating attention

distribution between the periphery and fovea strongly impacts contrast sensitivity and foveation

efficacy, we do not propose a method to measure attention. In contrast to overt attention, which

is readily measurable using eye tracking, covert attention is much more challenging. A promising

direction for exploration is the relation between pupil dilation and attentional effort [203] and in some

scenarios pupillary light response [204]. One might also investigate the combination of eye tracking

with image salience [205] or other metrics. It should also be noted that training and practice can

significantly improve the ability to split attention between the fovea and periphery [206]. This could

lead to decrease in attention dedicated to the foveal RSVP task. To mitigate this, we randomize

trial order and encourage sufficient rest time, yet such an approach is time consuming and limits

the CSF gamut that can be measured in one sitting. While we show that our orthogonal scaling

approach still leads to favorable performance when compared to baselines, we emphasize that our

attention model should not be extrapolated outside of the measured eccentricities. Finally, rather

than proposing a novel foveation algorithm, we focus on demonstration of the perceptual effect as

a whole. Future work should investigate more advanced foveation algorithms and explore the effect

of attention in the temporal domain.

4.4 Summary

At the convergence of applied vision science, computer graphics, and wearable computing system

design, foveated graphics techniques will play an increasingly important role in future VR and

AR systems. With our work, we hope to motivate the importance of cognitive science in human

perception and inspire a new axis of approaches within foveated graphics.



Chapter 5

Low-latency Foveated Display

Foveated graphics shows great potential for reducing the data needed to achieve perceptually realistic

experiences in VR and AR. This suite of techniques rely on accurate, real-time gaze information to

center the high quality content on the fovea, while decaying quality in the periphery. In practice,

however, these systems have update (motion-to-photon or end-to-end) latencies, i.e. the time delay

between the user’s eyes moving and the pixels of the display updating. For current-generation

commercial VR and AR displays that include native eye tracking, this is 45-81 ms in the best

case scenario [119], and more with complicated graphics pipelines for foveated rendering or other

display manipulation techniques [133]. This delay can cause discomfort (i.e., simulation sickness,

fatigue) [207], but also introduces uncertainty in a viewer’s gaze position1. This is illustrated in

Figure 5.1. If the system can’t update the foveal region fast enough, then the degraded peripheral

region will be incident on the fovea and the user will observe visual artifacts.

Despite this, the effects of latency on these displays are not well characterized. In foveated

rendering, a number of prior works have measured the maximal tolerable system latency to be

between 42 ms to 91 ms, depending on the size of the full resolution foveal image that follows the

gaze, the degree of degradation applied to the image, and the type of degradation method used [12,

43, 209, 210]. Similarly, Loschky et al. [211] also observed that detection of image artifacts due to

foveation in gaze-contingent, multiresolution displays did not change if latency was kept under 60 ms.

However, to the best of our knowledge, the impact of latency on the potential bandwidth savings

afforded by these techniques has not been described in the literature.

Display systems with larger latencies introduce larger uncertainty about the viewer’s gaze posi-

tion. So when saccades can occur at speeds of up to ∼900◦/s [24] (see Section 2.1.2), these systems

will require that foveated graphics techniques have a larger foveal region to avoid the perception

of the degradation applied in the periphery – when the system cannot update its position quickly

1Inaccuracy in an eye tracking device also contributes to this uncertainty but is out of scope of this work.
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t

eye moves
user observes 

artifacts

t + ∆t; ∆t < tL  

Figure 5.1: Illustration of how system latency can cause visual artifacts. (left) The gaze position used by
the system matches the actual gaze position, and the periphery can be highly compressed. (right) However,
if the user’s eye moves fast enough to escape the foveal region in a shorter time, ∆t, than the system latency,
tL, then the degraded peripheral region will be incident on the fovea and the user will observe visual artifacts.
(City image source: Derf’s collection [208])

enough. Consequently, there is tension between minimally sizing the foveal region for better com-

pression and sizing it large enough to ensure a viewer does not see visual artifacts.

In this work, we propose latency reduction as a method for improving the bandwidth saving po-

tential of foveated graphics. To this achieve goal, we design and build a custom, low-latency foveated

compression display system, and carefully characterize the breakdown of the sub-15 ms latency across

the end-to-end system. Finally, we use this system to conduct a user study, demonstrating that up to

2× extra bandwidth savings are possible just by reducing the latency of the gaze-contingent display

system. As such, we motivate the importance of latency as not just a systems engineering problem,

but as an axis crucial to the success of foveated graphics.

Figure 5.2: One reason VR display systems today cannot yet deliver retina-quality visual experiences is
due to bandwidth limitations. To reduce data rates, foveated compression techniques exploit the decay of
visual acuity across the visual field, keeping a small region of high resolution while decaying quality in the
periphery (illustrated on the left). We show that decreasing system latency benefits foveated compression
and enables minimally-sized regions of high resolution (illustrated on the right).
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Specifically, in this chapter we: (1) build and characterize a low-latency video streaming system

using foveated video compression that reacts to gaze changes within 15 ms, over 3× lower than

previously demonstrated in VR display systems, and (2) design and conduct a user study that

shows that just by reducing the system latency, can as much as double the bandwidth savings of

foveated compression without noticeable quality degradation.

5.1 Low-latency System Prototype

Understanding the impact of latency on foveated video compression requires a system with very

low latencies. However, current-generation commercial VR and AR displays systems have system

latencies over 45 ms [119]. In addition, these devices do not have sufficiently high resolutions (i.e., less

than 4K) to be an ideal test bed for studying the impact of latency on compression of retina-quality

video2. Consequently, we built a custom ulta low-latency foveated display system; a desktop-based

system as a proxy for future VR display systems. Doing so allows us to focus on the impact of

latency without the limitations of current devices.

5.1.1 Architecture

We designed our system based on a typical video-streaming architecture with a client and server

model. However, rather than the client only receiving encoded video frames from the server to decode

and display, the client also sends the viewer’s current gaze position each time a frame is received

(see Figure 5.3). This gaze sample allows the server to encode the next video frame foveated on the

viewer’s gaze position. To minimize system latency, the server and client run as separate processes

on the same machine and communicate using message passing, implemented with shared memory.

5.1.2 Two-Stream Approach

We model the decay in visual acuity across eccentricity (see Chapter 2, Section 2.1.4) with a simple

step function, implemented using two traditionally compressed video streams – one for the cropped

high-resolution foveal region and one for the low resolution background. For example, rather than

processing a full 4K (3840×2160 px) video, a two-stream approach might process a small 480×480 px

foveal region and a downscaled 768× 432 px background, which combines to be less than 7 % of the

original 4K pixels. While this approach results in a course approximation of spatial sensitivity, it

results in much less processing than other methods e.g. Gaussian fall-off [212], and focuses on the

impact of reducing the latency spent on encoding and decoding.

The server sequentially reads uncompressed frames at the frame rate of the input video. Then,

for each gaze sample it receives from the client, it compresses up to two versions of the current

2At the time of publication. Recent VR displays, such as the Vive Pro 2, do include 4k or higher resolution
displays.
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frame3. First, it downscales the video frame to a significantly lower resolution. Second, it crops the

video frame to a small area around the viewer’s gaze location. The resolution of both the downscale

and the crop are configurable. It then encodes these two frames to send to the client. At the client,

the reverse process occurs. First, the client decodes and upscales the background frame to the size

of its display. Next, it decodes the foreground frame and positions it at the corresponding gaze

position with a blend. In particular, we set the alpha channel (opacity) to a 2D Gaussian in order

to fade out the hard, square edges of the foreground. The parameters of the Gaussian are chosen

empirically. Finally, it displays this composed frame.

As is typical with compression techniques, this approach trades off increased computation (real-

time encoding per client) for reduced bitrate. While the server can pre-encode the background, the

foreground must be encoded in real-time using the viewer’s gaze.

DisplayViewer

gaze samples

Gaze Tracker

frame data
gaze

Client
(decoder)

encoded
frame

Edge Server
(encoder)

Input VideoNetwork

(~1.5 ms)

(~2 ms)
(network RTT)

(~3 ms)

(~3.5 ms video retrace + ~4 ms LCD physical transition)

Figure 5.3: Overview of our low-latency, desktop-based foveated compression prototype system. This
system allows us to focus on the effects of latency on foveated video compression by avoiding the limitations
complexities of current VR display systems.

5.1.3 System Details

We implemented our system in Rust, using SDL2, FFmpeg, and x264. Our workstation runs Pop! OS

20.04 and contains an AMD Ryzen 7 3700X CPU, 16 GB of 3200 MHz memory, and an NVIDIA

GeForce RTX 2070 SUPER GPU. Our display is an LG 27GN95B-B (4K at 144 Hz, 7.6 ms input

latency). We use an Eyelink 1000 to minimize the latency between a viewer’s eyes moving and

receiving the data in software. Although lower-latency eye trackers are continually being devel-

oped [213], the Eyelink 1000 provides the best accuracy, latency4, and sampling rate among those

that are commercially available (see Chapter 2, Section 2.2.1 for specifications).

3We also skip both background frames when the current video frame has not changed and foreground frames if the
gaze has not not changed.

4We disable the built-in filters to further minimize latency
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5.1.4 Measuring Latency

To ensure precision and repeatability, we carefully designed an automated system for measuring the

end-to-end system latency of our foveated compression prototype (illustrated in Figure 5.4). This

system is based on the previously used approach of using an artificial saccade generator (ASG) and

photodiode circuit [214–216]. An ASG emulates the user moving their eyes to trigger the eye tracker,

removing the need to rely on a human. Unable to find a suitable commercial ASG, we designed

our own based on an Arduino circuit. Since Eyelink 1000 uses the relative position of the pupil and

corneal reflection (CR) to track gaze position (see Section 2.2.1), we mounted a printed pattern of

an eye with 2 infrared LEDs placed behind pinholes in the pupil. The LEDs are connected in a

circuit such that a TTL (transistor-transistor logic) signal switches which one is on, where the other

is off. The eye tracker then acquires the pupil and detects the LED that is powered on as a CR.

To measure end-to-end system latency, our automated setup conducts the following steps:

1. The control computer sends a TTL pulse which triggers the ACG.

2. The ACG switches between the on/off LEDs, moving the CR position, emulating an instanta-

neous saccade.

3. The eye tracker detects this new gaze position and sends it to our decoder.

4. Our system uses this gaze position to process (including scaling, cropping, encoding and de-

coding) and display the next video frame, including a small white portion.

5. A photodiode is attached to the surface of the display, over the position of the white portion,

such this display update (from black) increases the luminance of the area underneath and

triggers the photodiode circuit.

6. The output from the photodiode is then used by the control computer to calculate the latency

between the onset of the saccade and the physical display change (specifically, the mid-point

of the rise slope).

In some cases, it is possible for the saccade to be triggered and the display pixels to change

within the one refresh cycle of the monitor. However, if the saccade does not line up with the frame

clock, then it may take up to an additional refresh cycle to update. To take this into account, we

run this measurement for 300 repetitions and plot the empirical cumulative distribution function

(ECDF) in Figure 5.4. The minimum observed latency is under 11 ms, with the majority of samples

falling under 16 ms, with the average being ∼14 ms. An approximate breakdown of where time is

spent is annotated in Figure 5.3.
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Figure 5.4: Our automated system for measuring end-to-end system latency. (left) The control computer
sends a TTL pulse which triggers the ACG, emulating a saccade. The eye tracker detects the change and
triggers our system to update the frame. The display change triggers a photodiode attached to the surface
of the display which is sent back to the control computer. The system latency is then calculated as the time
difference between the onset of the TTL and the mid-point of the photodiode rise slope. (right) ECDF for
300 measurements of end-to-end system latencies, averaging ∼14ms.

5.2 Characterizing Latency vs. Bitrate

We conduct a user study to characterize the relationship between system latency and how much

compression can be achieved while maintaining similar visual quality. In particular, we use our low-

latency prototype (described in Section 5.1) to measure how reducing latency may affect tolerable

compression bitrates.

5.2.1 Stimuli

Two 4K videos from Derf’s collection [208] were selected based on having different content but

both consisting of two sub-scenes. The first, barscene, shows one sub-scene with strong bokeh and

another with dialogue between two individuals that naturally guides a viewer’s gaze. The second,

square timelapse, shows one sub-scene of a busy crowd of people where viewers’ gaze typically

jumps around the scene, and another of a city skyline with many hard edges and natural scenery.

We evaluate these two videos at three system latency conditions, to keep the study to a reasonable

duration. First, we evaluate our system at its unmodified latency (∼14 ms). Then, we add artificial

delay to match the minimum and maximum latencies of commercially available display systems (as

measured by Stein et al. [119]: 45 ms and 81 ms). For each video and latency combination, we

prepare a set of compression configurations starting at lower resolutions with higher compression,

and moving to higher resolutions with lower compression. We also encode the video at 28 Mbit s−1

as a proxy for the video quality of streaming platforms like YouTube5. In this way, we conduct

a user study to assess which compression level is of most similar visual quality to the 28 Mbit s−1

“YouTube” version, for a given system latency.

5Specifically, we use x264 --preset veryfast --bitrate 28000.
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5.2.2 User Study

Setup We use the system detailed in Section 5.1.3. As shown in Figure 5.5, the participant’s head

is stabilized using an SR Research headrest, and the eye tracker is placed between the monitor and

participant. The display is placed 57 cm away from the headrest, giving a horizontal FOV of 55◦

and above retina resolution.

Procedure To start the session, the eye tracker was calibrated and the tracking accuracy validated

for each participant. Then, participants viewed two different videos and performed the same task

on each. The order in which the videos were presented was equally divided among participants. For

each video, participants were asked to perform four trials of a matching task. Three of the trials

correspond to each latency points (14 ms, 45 ms and 81 ms), and the last was one of these points

randomly selected, to provide a check for consistency. The order of the trials was also randomized.

For each trial, participants were shown a reference video (the 28 Mbit s−1 or “YouTube” encoding)

and then asked to select which (if any) of ten comparison videos (ordered by increasing quality) was

the most similar in quality. Participants were allowed to take as long as they wished to make their

selection and could freely navigate and re-watch any of the videos. Each participant did 8 trials,

resulting in a study duration of ∼45 min.

Participants We recruited 13 participants6. All participants provided written consent before

taking part in the study, and the methods were approved by Stanford’s institutional review board.

Before each experiment, the participants were briefed about the purpose of the study and their task.

Of these 13 participants, we excluded 2 participants’ data from the results because we were unable

to achieve a maximum calibration accuracy error <10◦ (unacceptably large compared to the size of

the foveal region).

Results The mean compressed bitrate as a percentage of the 28 Mbit s−1 baseline along with the

95 %-confidence interval for each latency are shown in Figure 5.5. Firstly, we can appreciate the

power of gaze-contingent rendering and display paradigms. Even with a simple two-stream approach

at system latencies comparable to commercial VR devices [119], can compress these videos to ∼ 20%

of the baseline while maintaining a similar visual quality. We can also see that reducing that system

latency from 81 ms to 45 ms does not significantly improve the required video bitrate (t-test, t = 0.10,

p = 0.92). It is not until we push the system’s latency to below that of commercially available display

systems that we see a significant, additional ∼2× compression benefit (t-test, t = 2.76, p = 0.008).

This finding also suggests this relationship is not simply a question of making the foveal region larger

as the delay increases – we suspect there is a distinct phenomenon (and a compression opportunity)

at low latencies.

6The COVID-19 pandemic limited the number of participants available for this study.
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Figure 5.5: Latency vs. compression, with 95%-confidence intervals. We improve compression by 5× using
a simple two-stream approach. However, the full benefit comes only at latencies lower than demonstrated
by current VR HMDs.

5.3 Discussion

Despite being key to their success, the system latency of gaze-contingent displays is rarely discussed.

With this work, we present latency reduction as a method for improving foveated video compression

and validate its potential by implementing a prototype, ultra-low-latency video streaming system.

Our findings suggest not only that driving down system latency can result in significant compression

gains without changing the compression algorithm itself, but also that these gains might only be

realized with system latencies much lower than previously proposed budgets. Yet, several important

questions remain to be discussed.

Limitations and Future Work This work focuses on evaluating the impact of motion-to-photon

latency on the compression ratio of gaze-contingent compression. As a result, our low-latency proto-

type has a few important limitations. First, our system excludes the latency introduced by separating

the client and server with a realistic network. The need for low server-to-client latencies means that

a video encoder would need to be near the client at the network edge (a potential use case for edge

computing). Our prototype also uses an encoder-in-the-loop approach to perform video compres-

sion and streaming in real-time. This approach has a higher computational cost than those that

pre-encode video since it instead requires the server to encode video for each viewer. Additionally,

we evaluate our system using an eye tracker and display that are among the fastest available today;

comparable performance is unavailable on the consumer market or in current head-mounted displays.

With regards to our user study, it would be useful to know exactly what latency target is required

to realize a significant reduction in transmitted bitrate through gaze-contingent encoding; that is

to say: if reducing latency from current levels (∼ 80 ms) to ∼ 45 ms is not helpful, but reducing

to 15 ms is very helpful, then what does the curve look like between 15 and 45ms? Because of the

limitations of our study (which was conducted during the COVID-19 pandemic), we cannot answer

these questions today, but encourage the community to further investigate the trade-offs between
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lowering latency in gaze-contingent video transmission and resulting bitrate reductions.

5.4 Summary

Foveated graphics shows great potential for reducing the data needed to achieve perceptually realistic

experiences in VR and AR. With this work, we hope to highlight the importance of latency as not

just a systems engineering problem, and spur follow-on work investigating other implications for

VR/AR.



Chapter 6

Gaze-contingent Stereo Rendering

Accurate stereoscopic (or just stereo) rendering is one of the key requirements for perceptual realism.

As described in Chapter 2 (Section 2.1.8), humans are very sensitive to changes in disparity and so

even small inaccuracies in the rendering would lead to objects being perceived at a different depth

than intended. Especially in the case of optical see-through AR displays, where we want to place and

anchor digital objects physical environments, even small amounts of disparity distortion negatively

affect the experience and would destroy the seamless blending of virtual and real content.

Current stereo rendering algorithms used in VR and AR fall short of accurately modeling the

HVS. As described in Section 2.1.8, the geometry of the system, including the user’s IPD is used to

calculate and display the retinal disparity that would occur during real-world viewing. An approxi-

mation made by almost all existing systems is that the no-parallax point, or center of projection, of

the human eye is co-located with the center of rotation. However, recent work suggests that this is

not in fact the case, and that the no-parallax point is instead slightly forward offset from the center

of rotation [18]. As illustrated in Figure 6.1, when the user verges far, this finding has negligible

effect, as the distance between the pupils (or IPD) is also the distance between the no-parallax

points. But as the user verges closer, the true IPD is actually gaze-contingent and the geometry of

the disparity calculation should change depending on where you are looking.

In this chapter, we analyze how not accounting for this ocular motion causes disparity distortion

in stereo viewing conditions (see Figure 6.2 for an example), and propose and evaluate a new gaze-

contingent stereo rendering approach for VR and AR. Moreover we design and conduct a number

of user experiments that allow us to make important insights and improvements to existing stereo

rendering techniques. First, we experimentally determine the location of the no-parallax point with

a small group of subjects and verify that this is well approximated by recently employed model eyes.

Second, we experimentally demonstrate that our approach significantly improves disparity distortion

in VR settings and perceived alignment of digital and physical objects in AR.
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Figure 6.1: Schematic showing how true IPD changes with gaze position because the no-parallax point,
or optical center of the eye, is slightly forward offset from the center of rotation. When a user verges far,
this finding has no effect, as the distance between the pupils (IPD) is also the distance between the no-
parallax points. But as the user verges closer, the points shift inwards, meaning that true IPD is actually
gaze-contingent and the geometry of the disparity calculation should change depending on where you are
looking.
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Figure 6.2: Ocular motion associated with changes of fixation alters the positions of the no-parallax points
in both eyes. Rendering models that do not account for this motion can create distortions of binocular
disparity, as seen in this example. The color-coded error maps illustrate the magnitude of this effect as the
difference between angular disparities resulting from conventional and our gaze-contingent stereo rendering
for two different fixation points. Both shortening (red) and stretching (blue) of disparity gradients can be
observed.

Specifically, in this chapter we: (1) introduce a gaze-contingent stereo rendering algorithm that

includes a more accurate model eye than previous work, design and conduct user experiments that

demonstrate significant improvements in (2) disparity distortion and enhanced depth perception in

VR, and (3) perceptual realism and alignment of digital and physical objects with optical see-through

AR.
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6.1 The No-parallax Point of the Eye

6.1.1 Background

The no-parallax point of an optical system, such as the human eye, represents the location around

which the entire system can be rotated without observing parallax. While exact eye anatomy varies

from person to person, several cardinal points and axes are used to describe optical properties com-

mon across the population. For the purpose of describing our gaze-contingent rendering approach,

we refer to six of these cardinal points and two axes, however additional definitions are included

in Appendix C.1. The first axis is referred to as the optical axis, and is anatomically defined by

passing through the anterior vertex of the cornea (V) and the center of rotation (C) whereas the

visual axis registers the fixated object (P) with the fovea (F) while passing through front (N) and

rear (N’) nodal points [217] (illustrated in Figure 6.3). From ex vivo examinations, the front nodal

point has been estimated to lie 7–8 mm in front of the center of rotation [218]. Note that the loca-

tion of this point changes with the accommodation state but such variance is relatively minor (less

than 0.5 mm [218]), which is particularly true for current fixed-focus VR and AR systems. While

it has been postulated that the front nodal point is in fact the no-parallax point of the eye, to our

knowledge the only study trying to verify this could not give a confirmation as the larger measured

distance hinted at the no-parallax point being located even further forward [219].

optical axis

visual axis

nasal side

temporal side

Figure 6.3: Illustration of the optical and visual axes and relevant points in the right eye (top view). The
optical axis connects the anterior vertex of the cornea (V) and the center of rotation (C). The visual axis
connects the point of fixation (P) with the front nodal point (N), which extends through the rear nodal
point (N’), to intersect with the fovea (F). The angle α offsets the visual axis on average by 5◦ in the nasal
and 3◦ in the inferior directions.

6.1.2 User study

In this work, we conduct our own psychophysical study to experimentally determine the position

of the no-parallax point for several users. For this purpose, we adapt the general setup proposed

by Bingham [219]. As shown in Figure 6.4a, two surfaces are separated in depth and aligned such
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that when the users fixate at the rear one, they cannot see its red half. However, when instructed

to fixate at the gaze target with an angular displacement θ (with the head fixated), the rotation of

the eye shifts the no-parallax point of the eye towards the left. This reveals an extent E of the rear

surface and the red half becomes visible in the periphery. Note that this is only possible if the center

of perspective of the eye, and equivalently the no-parallax point, is located in front of the center of

rotation.

The distance between no-parallax point and center of rotation, NC, can then be calculated using

the target distances L1 and L2 as:

NC =
EL1

(L2 − L1) sin θ + E cos θ
(6.1)

A more detailed derivation of this equation is included in Appendix C.2. We construct this setup

with L1 = 0.5 m, L2 = 1 m and θ = 30◦ in a controlled experiment to determine the largest extent,

E, a user can detect. This is equivalent to determining the number of pixels the red region can be

shifted towards the right before the user can no longer detect it. The configuration also means that

scattering within the ocular media should not increase a user’s ability to detect the red region due

to the light not being able to enter the eye at or beyond this threshold. After converting pixels to

meters, Equation 6.1 can be used to calculate NC for the user.

Stimuli. We use a 6” Topfoison liquid crystal display (LCD) with a resolution of 1920 × 1080

and an edge-lit light-emitting diode backlight as the far target, as shown in Figure 6.4b. This

enables us to easily control and change the displayed extent using an attached laptop, to a precision

of 0.069 mm (the pixel pitch of the display). Without eye rotation, the front half surface would

completely occlude the red stimulus. Each trial contained both an extent stimulus with red and

white regions and a control stimulus, where the full LCD displayed only white. The brightness was

defined in the RGB space of the display. The white pixels were rendered at 80% brightness across

red, green and blue channels to reduce the apparent brightness to approximately that of the red

extent with 100% red alone.

Conditions. All stimuli were presented monocularly to the right eye while the user wears an

eyepatch on the left eye. With the user accommodated at the L2 distance, the eye’s limited depth

of field can cause the edge of the half surface to appear blurred. As Bingham et al. [219] described

this as a confounding factor, we try to mitigate it using a lamp to illuminate the gaze target to stop

down the pupil aperture and maximize the depth of field.

Subjects. Eight adults participated (age range 21–29, 3 female). Due to the demanding nature

of our psychophysical experiment, only a few subjects were recruited, which is common for low-

level psychophysics (see e.g. [13]). All subjects in this and all following experiments had normal
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Figure 6.4: Psychophysical experiment to measure the position of the no-parallax point. (a) A diagram of
the experimental setup. A half surface and an LCD panel are set up at distances L1 and L2, respectively.
As the eye rotates counterclockwise about its center by an angle, θ, the no-parallax point is translated to
the left revealing an extent, E, along the rear surface. The distance NC, shown in green, corresponds to
the largest distance the red extent can be shifted towards the right before the user can no longer identify
it. (b) Photograph of a user conducting the experiment. The head is kept stationary with a headrest and
bite bar. The computer is used to change the stimulus on the LCD panel and record the user’s response
given by the keyboard. The lamp is used to illuminate the gaze target to reduce depth of field blurring of
the edge of the half surface. (c) Results of psychophysical user experiment. The NC distances measured for
each of the 8 study participants are shown with 95% confidence interval represented as an error bar. The
final column (AV) represents the mean of all participants, 7.29mm, with error bar showing the standard
deviation of 1.25mm.

or corrected to normal vision, no history of visual deficiency, and no color blindness. All subjects

gave informed consent. The research protocol was approved by the Institutional Review Board at

Stanford University.

Procedure. To start the session, each subject was instructed to use the left and right arrow keys

to shift the red portion on the screen such that they could just see it when looking down the center

of the targets. After subtracting one pixel, this was used as E = 0 for all subsequent trials.

Each trial constituted a two-alternative forced choice (2AFC) test, and subjects were asked to

use the keyboard to choose which of the two displays contained the red extent. The keyboard could

also be used to toggle between the two displays as the users desired. Most users did so less than

10 times. However once a selection was made, this concluded the trial. No feedback was provided.

Subjects were instructed to fixate only as far as the cross target, but were free to look back to the

far display if desired.
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Subjects completed 60 trials, consisting of 12 displayed extent, E, configurations, each tested 5

times. The experiment took about 20 minutes per subject to complete, including instruction and

centerline calibration.

For the first block of 30 trials, E for a given trial was randomly chosen from 6 evenly spaced

values between 20 and 80 pixels (1.38 and 5.52 mm), covering the range of expected values. For the

second block of 30, E for a given trial was randomly chosen from 6 evenly spaced values between the

values of E from the previous trial block where the user was getting less than 90% and more than

60% correct. This paradigm was chosen to maximize sampling around the threshold value, without

causing observable fatigue.

Analysis. For each E displayed, we compute the proportion of correct responses. Using the

psignifit Python package [220], we fit a psychometric function to each subject’s data using Bayesian

inference. Each psychometric function gives us a detection threshold, measured as pixel shifts from

the initial set position. The thresholds represent where the psychometric function exceeded a 75%

chance for a correct response. Individual psychometric fits are included in Appendix C.4. This is

converted to meters using the pixel pitch of the display (0.069 mm) and NC is then calculated using

Equation 6.1.

Results. The results of this experiment are shown in Figure 6.4c, giving a mean of 7.29 mm for

NC, which is within the originally expected range of values (7–8 mm). Surprisingly, we observe a

variation of about 3.54 mm among our subjects, indicating that there may be value in measuring and

accounting for individual variation. However, the difficulty of measuring a person’s NC distance

makes such an approach impractical at the moment, so we continue to model an “average observer”

as having NC = 7.29 mm for the remainder of this chapter.

6.2 Implications for Stereo Rendering

In this section, we study the effects of the no-parallax point on binocular vision and the horopter,

leading to the prediction of a surprisingly high degree of disparity distortions with conventional stereo

displays. We outline a gaze-contingent (GC) stereo rendering pipeline that takes the no-parallax

point into account for precise disparity rendering.

6.2.1 Binocular Vision and the Horopter

The binocular horopter refers to the set of points in space that give rise to the same disparity on the

retina [221]. Thus, the horopter provides a useful tool for analyzing and comparing different models

for binocular vision. It is geometrically modeled as an arc on a Vieth-Müller circle formed by the

two no-parallax points and the fixation point [221]. The choice of no-parallax point determines the
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Figure 6.5: The horopters predicted for various eye models: the center of rotation model (black dashed),
the front nodal point with the gaze vector being the optical axis (blue dotted) and the visual axis (green
solid). Note that fixation leads to a different eye rotation for each axis (only visual axis-aligned eyes are
shown here). The angle α is exaggerated for clarity.

specific shape of the horopter [222]. In Figure 6.5 we show geometrical horopters for the no-parallax

point in the center of rotation, as commonly used in computer graphics (black), and in the front

nodal point, as used here. The shape is further differentiated by the choice of gaze vector where

the angular offset of the visual axis used in our model (green) yields a different horopter than the

approximation using the optical axis as used by Konrad et al. [18] (blue). In the following, we outline

an adequate rendering pipeline for our model and then analyze the expected disparity distortions

when using other models.

6.2.2 Stereo Rendering

Traditional stereo rendering models the projection of 3D points into eye coordinates using a matrix–

vector multiplication of the matrix PL/R ·EL/R ·V ·M with a vertex specified in object coordinates.

Here, M is the model matrix, V is the view matrix, EL/R is the eye matrix and PL/R the projection

matrix for left and right eye, respectively. Accounting for the no-parallax point requires changes to

the eye and projection matrices, which we describe in the following.

Eye matrix Assume that the centers of rotation of the eyes are CL/R = (∓ ipd
2 , 0, 0), where ipd

is the IPD. Conventionally, the eye matrices are defined as translations into the eye centers, i.e.

EL/R = T(−CL/R), using the translation matrix T. To account for the distance between centers of
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(a)

(b)

Virtual image d

z < d z = d z > d

Fixation

FixationVisual axis

Projections

Figure 6.6: Ocular parallax for a virtual image at distance d and objects at distances z < d (yellow), z = d
(green) and z > d (red). (a) All points project to the same screen coordinates and a single spot on the fovea
when the green point is fixated. (b) After a saccade the display projection of the near point moves up, the
projection of the far point moves down and the projection of the middle point remains the same. The retinal
image changes accordingly.

projection and rotation, nc, we calculate the gaze-dependent location of the no-parallax point with

respect to CL/R

nL/R = R
(
−θ

(v)
L/R,−θ

(h)
L/R, 0

)
·R
(
−αL/R

)
·


0

0

−nc

 (6.2)

Here, αL/R = (−3◦,∓5◦, 0) is the offset, in eccentricity angle, between optical and visual axis for

the two eyes [218], θ(h,v) represent the horizontal and vertical gaze angle for each eye, R is a 3 × 3

rotation matrix using Euler angles, and we use nc = 7.29 mm from our earlier experiment. The eye

matrices then become EL/R = T(−nL/R) ·T(−CL/R). Note that this notation uses a right-handed

coordinate system, such as that used by OpenGL.

Projection matrix We use standard asymmetric off-axis perspective projection matrix PL/R de-

fined for a magnified virtual image of the microdisplay at distance d [18]. Note that the projection

matrix depends on the gaze-dependent position of the no-parallax point (Equation 6.2). As illus-

trated in Figure 6.6, for 3D points located at distance d no ocular parallax is observed, i.e., this is

the zero-parallax plane. Setting the parameter d to match the virtual image distance of a near-eye

display is critical for correct reproduction of disparity with gaze-contingent stereo rendering.
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6.2.3 Disparity Distortion

We model the image formed on the retina using the considered binocular projection model to quantify

the magnitude of the expected disparity distortion. In Figure 6.7, we present the differences of the

vergence angles predicted for the same fixation points. We further use the disparity perception

model by Didyk et al. [223] to compute just-noticeable differences (JND). Values above 1 JND

predict visibility of the predicted distortions. Note, that verging at each fixation point requires eye

rotation to achieve required gaze eccentricity. We mark the normal range of horizontal eye rotation

(±45◦ [26]) by the red lines.
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Figure 6.7: The difference of eye vergence angles predicted for different fixation points by the gaze-
contingent (GC) model with visual axis and either the standard model using center of rotation (a) or the GC
model with optical axis (b). The fixations are expressed relative to the midpoint between both no-parallax
points in relaxed state. The initial IPD = 64mm was defined for the eyes looking straight ahead. The
isolines mark levels of stereoacuity JNDs from Didyk et al.’s [223] model for the optimal spatial frequency of
0.4 cpd. Values of JND of 1 and larger predict visibility of a difference in a direct comparison for an average
observer. The range of eccentricities covers the full binocular FOV achieved through combination of gaze
and retinal eccentricities [217]. Note, that normal range of eye rotation needed for gaze fixation is delimited
by the red bars [26].

The left panel compares our full model and the model based on the center of rotation. We

observe that even for fixations as far as 2.5 m the difference of vergence angles yields visible disparity

differences. This difference further grows with decreasing distance. Additionally, the horizontal

eccentricity affects the shape of the distortion field. While the model predicts larger perceived

distances in our model for the central visual field, this trend is reversed for eccentricities above

≈ 40◦.

This effect can be practically demonstrated in AR where real objects are superimposed with

virtual objects. In Section 6.4, we show that traditional stereo rendering causes visible misalignment

of physical and digitally rendered objects and we demonstrate how gaze-contingent stereo rendering
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Figure 6.8: Verifying the detection threshold for gaze-contingent rendering. (a) The stereoscopic stimulus
visualized in anaglyph. (b) Conceptual side view (schematic) of the stimulus presentation. The stimulus
rendered without gaze-contingent (GC) rendering appears to pop out from the background, unlike the other
stimulus (unseen under the black line), which are both rendered with GC rendering. (c) The predicted
disparity differences between models with and without ocular parallax for a VR display with a display
distance d = 0.7m. The red bars delimit normal range of horizontal eye rotation which restricts the range
of gaze fixation eccentricities [26]. (d) The JNDs for different fixation distances of the central vision around
the display (the inset shows larger distance range). The red interval marks the detection threshold and SE
interval measured in our experiment. (e) An example of psychometric function fit for one user.

reduces this issue significantly.

The right panel of Figure 6.7 further compares our model with a variant that assumes the optical

axis, instead of the visual axis, to be a good approximation of the gaze direction (Figure 6.5). While

the differences for the central visual field are relatively small, the role of the axis is notable for larger

viewing angles.

Finally, we also analyze the effect in terms of no-parallax point separation and its change with

respect to the initial IPD. For an average IPD of 64 mm and a fixation distance of 30 cm we observe

an effective decrease of viewpoint separation to as low as 62.5 mm. That corresponds to a shift

from 68 to 52-percentile of the IPD distribution in the female population [224] which is a deviation

that typically requires user adjustment in common VR systems. To illustrate this phenomenon, we

explore the produced shape distortions in a VR scenario in Section 6.3.

6.2.4 Verifying the Model

Figure 6.7 predicts the visibility of the difference between both models for an average observer and

a theoretical display with virtual image distance, d → ∞. To validate our model we tested this

hypothesis with a user study using a VR platform. Using the same equipment as in Section 6.3,

we conducted a detection study using a random dot stereogram (RDS) stimulus at varying depths.

See Appendix C.3 for more detail on RDS stimuli. The users were presented with two RDS stimuli,
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rendered at the same depth, but placed on top of each other (i.e., vertically) in the center of the visual

field (Figure 6.8a). Each stimulus was a square 10◦ in width. In random order, one stimulus was

rendered with and one without gaze-contingent stereo rendering. As a result, one of the stimuli had

a different disparity than the background, which is itself an RDS stimuli rendered at the same depth

with our gaze-contingent mode (illustrated in Figure 6.8b). Users were tasked with a 2AFC and used

a keyboard to report whether the upper or lower segment contains the patch that protrudes from

the background. All stimuli were rendered at a distance of 1, 1.33, 1.5, 1.75, 2, 2.5 or 3 D (diopters,

inverse meters), with 6 trials at each distance in a randomly shuffled order. A black screen was

shown for 3 s between trials to assist in eye adjustment. For each of the 7 distance configurations,

we computed the proportion of correct responses. Using Bayesian inference methods [220,225], we fit

a psychometric function to each subject’s responses, finding the fixation distance with 75% detection

threshold (shown in Figure 6.8e). 11 subjects (6 male, 5 female, aged 18–54) took part in the study.

Individual psychometric fits are included in Appendix C.4.

Using a digital single-lens reflex (DSLR) camera, we measured the display distance d of our

HTC Vive Pro to be ≈ 70 cm. This changes the distribution of depth distortion in Figure 6.7 such

that the 1 JND occurs at a distance of 66 cm (see Figure 6.8c). We found that the depth distortion

was detectable, on average, at a distance of 62.8 ± 1.3 cm or 1.59 ± 0.033 D (Standard Error,

SE). This confirms the importance of taking the no-parallax point into account for accurate stereo

rendering. While we chose not to additionally burden users with measuring their stereoacuity, the

similarity of the mean measured detection distance to the model-predicted expected distance of

1.52 D confirms our model’s ability to predict observable disparity distortions of different rendering

models (Figure 6.8d).

6.3 Depth Distortion in VR

The analysis and experiments in Section 6.2.3 predict visibility of disparity distortion for rendering

that ignores the gaze-contingent shift of the no-parallax point. Here, we explore this issue further

and experimentally test a hypothesis that a shape of a 3D object rendered using the traditional

stereo rendering will appear distorted as a function of fixation distance. Further, we validate that

our gaze-contingent rendering reduces this distortion significantly.

Hardware and Software. We used an HTC Vive Pro VR system, which has a diagonal FOV

of 145◦, a refresh rate of 90 Hz and a 1440×1600 pixel organic light-emitting diode display per

eye, resulting in a theoretical central resolution of 4.58 arcmin/pixel. The HTC Vive Pro supports

built-in IPD adjustment. Unity was used as the rendering engine for all rendering modes and user

experiments.
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Stimuli and Conditions. For this experiment, we require a stimulus whose apparent shape does

not rely on metric structure, but only on ratios of its dimensions. For this purpose, we emulated

the triangle wave experiment performed by Glennester et al. [226] for measuring stereoscopic depth

constancy. As illustrated by the schematic in Figure 6.9a, this stimulus is a triangle wave formed by

an RDS pattern. It is rendered such that the amplitude is half the period of the peaks. Thus, if the

depth rendering is physiologically correct, the dihedral angle of the peaks and troughs should be at

90◦ (shown in dark green). However, if the depth space is perceived as stretched, as we predict is

the case without gaze-contingent rendering (see Section 6.2), then the angles should appear smaller

than 90◦. Similarly, a perceived compression of the depth space would increase the angles. A scaled

crop of an illustrative anaglyph reproduction can be seen in Figure 6.9b.

During the user study two identical patterns were shown horizontally side-by-side, one with and

one without GC rendering, at a depth of either 0.3, 0.5 or 0.7 m. These depths were chosen such

as to increment to the measured display distance of the HTC Vive Pro (0.7 m), where no disparity

distortion should be observed. We refer to the rendering without GC as fine-tuned (FT) rendering,

since we first set the subject’s IPD using the physical knob provided on the device, and then allow

the user to further tune the horizontal separation of both virtual images in projection matrices. This

was done by rendering a single pattern at a fixed far distance and instructing the users to tweak the

separation until the stimulus exhibited 90◦ angles. The distance of 2 m was chosen as a compromise,

where the effect of GC rendering diminishes yet binocular disparity is still a relevant depth cue.

The GC mode was identical to the FT mode, but with the modifications described in Section 6.2.2.

Finally, to ensure fair comparison of these rendering modes, we shift the center of projection in the

FT mode from the center of rotation to the position of the GC no-parallax point of a user looking

towards optical infinity. This ensures that the only difference between the two modes comes from

the gaze-contingent movement of the no-parallax point and not from an arbitrary initial position

bias.

Procedure. Before starting the trials, each of the nine adult subjects (age range 18–54, 4 female)

completed the calibration procedure described above to set-up the FT rendering mode. Each trial

then constituted a 2AFC, where one of the three tested depths was randomly chosen for rendering,

and subjects were asked to choose which of the two randomly ordered patterns (left or right) exhibited

angles closer to 90◦. A total of 24 trials were conducted, taking each user approximately 10 minutes

to complete the study.

Results. The results of the comparisons averaged across users and trials are plotted in Figure 6.9c.

At 0.3 and 0.5 m, the GC rendering was chosen as closer to the target of 90◦ in 73.6% and 62.5%

of trials, respectively. This is significantly more than FT (p < 0.001, respective p < 0.05, one-tailed

binomial test). The visibility of the difference decreases towards the display distance d = 0.7 m

where GC was only preferred at near chance level of 51.4%.
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Figure 6.9: Evaluating shape distortion of virtual content. Subjects simultaneously viewed two identical
triangle wave random dot stereogram (RDS) stimuli, one rendered with fine-tuned (FT) IPD and the other
with gaze-contingent (GC) rendering. (a) A schematic of a cross-section of the stimulus. Designed to evaluate
shape distortion caused by incorrect depth scaling, the dimensions of the RDS triangles are calculated such
that the amplitude of the peaks (in depth) is twice the lateral distance (period of the pattern). If the depth
space is correct, the dihedral angle of the peaks should be at 90◦ (green), but if the depth space is stretched
(as it is without gaze-contingent rendering), the angles should appear smaller (red). (b) An illustrative
anaglyph rendering of the stimulus (not to scale). Both stimuli were rendered at a target depth of either
0.3, 0.5 or 0.7m and we asked subjects to indicate which of the two contained angles is closer to 90◦. (c)
The percentage of times that the gaze-contingent mode was chosen as more accurate per distance. Despite
the seemingly small effect size, shape distortion is detectable, in particular for closer distances. Error bars
represent Standard Error (SE) and significance is indicated at the p < 0.05 and 0.001 levels with * and **
respectively.

These results suggest that accounting for the gaze-contingent no-parallax point is important for

correct depth scaling needed to properly convey relative distance and shape of objects within a scene,

particularly when a user is verging to a close object or familiar shape, such as a cube. Judging the

angle at which two planes meet requires higher-level reasoning and combination of both absolute

and relative depth cues. We expect that the distortion can be even easier to detect in tasks where

the relative displacement of two surfaces alone is a sufficient cue. We explore this hypothesis in the

following AR alignment study.

6.4 Alignment Inaccuracy in AR

Many applications in AR desire accurate alignment of digital and physical objects. For example, a

surgeon aligning medical data to a patient will want to rely on it being displayed in the correct place.

As such, accurate depth rendering is critical. Section 6.2.3 predicts displacements of virtual objects

when the position of the no-parallax point is not taken into account. Here, we experimentally verify

visibility of this effect in an AR environment. We further test a hypothesis that our gaze-dependent

rendering can noticeably improve the accuracy of alignment between the virtual and real objects.
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Hardware and Software. We used a Microsoft HoloLens 1 optical see-through AR headset,

which has a diagonal FOV of 34◦, a refresh rate of 60 Hz and a 1280×720 waveguide display per eye,

resulting in a theoretical central resolution of 1.39 arcmin/pixel. As with the VR user experiment,

we again used Unity to render all modes and control the user experiment.

Stimuli and Conditions. The stimuli consisted of a single 8 cm tall flat surface, textured with

a playing card image (see Figure 6.10a), displayed at target fixation distance of either 0.5, 1.0, 1.5

or 2.0 m. Again, these distances were chosen such as to increment to the display distance of the

Microsoft HoloLens (2 m), where no disparity distortion should be observed. A physical target was

placed at the same distance from the user (as measured from the user’s eyes in the physical world)

but with a small lateral displacement, such that the virtual and physical objects would appear

side by side (see Figure 6.10b). In the experiment, subjects viewed the rendered stimulus in three

rendering conditions: conventional (HL, i.e., as provided by the Windows Mixed Reality SDK in

Unity), fine-tuned (FT), and gaze-contingent (GC). For the HL rendering mode, we implemented

the online instructions provided by Microsoft for rendering to the HoloLens with Unity. We let

the rendering be set up by the supplied Windows Mixed Reality SDK and only adjusted the IPD

setting for each user through their Developer Portal interface. For the FT rendering mode, we

followed a similar procedure for adjusting virtual image separation as in Section 6.3. In this case,

the manufacturer-provided calibration was fine-tuned for each subject by aligning the card stimulus

at a calibration distance of 2 m. Finally, the GC rendering mode was identical to the FT mode, but

with the same modifications as in Section 6.3. This was again motivated by the desire to show that

even a more accurate calibration of the IPD is insufficient to remove the misalignment observed at

closer distances if the position of the no-parallax point is not taken into account. While wearing the

headset, an SR Research head rest was used to keep the subject’s head fixed with respect to the

physical targets throughout the study.

Procedure. Each set of trials began with the IPD fine-tuning task required to set up the FT

rendering for each of the thirteen participants (age range 18–54, 7 female). Each trial constituted

a 2AFC, where one of the three target depths was randomly chosen, and subjects were asked to

choose which of the two selected modes provided the best alignment in depth with the physical

target, which was placed by the researcher before the stimulus was shown. Subjects had the ability

to freely switch between the modes using a keyboard key before making a selection, though most

users only made a single switch per trial. A total of 12 trials were conducted comparing FT and HL

rendering, followed by a short rest break. After which, the calibration was repeated, and another 12

trials were conducted comparing FT to GC rendering.

Results. The results of the comparisons averaged across users and trials are plotted in Fig-

ure 6.10c and d. At all measured distances the FT rendering achieves significantly better alignment
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of the rendered and physical stimulus than the HL rendering (100%, 100%, 94.2% and 86.5% of tri-

als, p < 0.001, one-tailed binomial test). Some users found it harder to judge the difference between

the two modes as the planes moved further away, but overall, it can be seen that fine-tuning the

user’s IPD measurement by calibration almost consistently improved alignment compared to the

conventional approach.
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Figure 6.10: Evaluating alignment of real and virtual content. Subjects viewed a playing card (a) rendered
at a target depth of either 0.5, 1.0, 1.5 or 2.0m next to a physical reference. In the first set of trials (c),
this stimulus was presented with either native HoloLens (HL) or fine-tuned (FT) rendering and we asked
subjects to indicate which rendering mode provided the most accurate alignment with the physical target.
A photograph of the experiment set-up is shown in (b) (the card is added for illustrative purposes). In
the second set of trials (d), subjects were asked to compare fine-tuned and gaze-contingent (GC) rendering.
Results of these comparisons show the percentage of times the first member of the pair was chosen over
the second. It can be seen that using an initial calibration procedure to accurately measure the subject’s
IPD significantly improved alignment compared to the standard HoloLens approach for all distances. Fur-
thermore, GC rendering was able to further improve alignment at closer distances indicating that it is most
critical for arm’s reach viewing. Error bars represent Standard Error (SE) and significance is indicated at
the p < 0.05 and 0.001 levels with * and ** respectively.

Moreover, additional improvement of alignment was observed in the GC rendering mode which

achieved a significant preference over the FT for distances of 0.5 m (96.2%, p < 0.001) and 1.0 m

(71.2%, p < 0.05). While it was more difficult to detect differences for larger distances (57.7% at
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1.0 m) the results of the experiment confirm our hypothesis that accounting for the gaze-contingent

shift of the no-parallax point is crucial for accurate reproduction of stereoscopic disparity. Although

fine tuning of the IPD proved helpful, the gaze-contingent rendering was required to ensure good

alignment of virtual and physical objects across distances in AR. While the shift may become

indistinguishable for far away objects, gaze-contingent stereo rendering could be critical in several

near AR tasks, including AR-assisted surgery, maintenance, and training.

6.5 Discussion

In summary, we study the disparity distortion induced by ignoring the gaze-contingent location of

the no-parallax point in the human eye. Using several user studies, we experimentally validate the

location of the no-parallax point and demonstrate that modeling it accurately during stereo render-

ing significantly reduces disparity and shape distortion in a VR setting and significantly improves

consistent alignment of physical and digital objects in an optical see-through AR setting.

The results of our experiments show that disparity distortions are easier to detect in the AR

alignment task (Section 6.4) than in the VR shape matching task (Section 6.3). This is expected as

the human visual system is sensitive to even small disparity changes between a physical reference

and a digitally rendered object [223]. On the other hand, the shape judgment task required subjects

to interpret the relative disparity in the context of estimated object distance. Without a real-world

reference, the relatively poor absolute depth cue of eye convergence likely increased the difficulty of

the task [227].

Limitations and Future Work Gaze-contingent stereo rendering relies on robust gaze tracking,

however, since the magnitude of parallax changes gradually with eye rotation, we do not require

extreme accuracy in gaze prediction. For the model situation in Figure 6.8 and a central vision

fixation distance of 1 m, a 1◦ differential tracking error between gaze angles of both eyes results in a

disparity rendering error of 12 ” (arcseconds) which is a difference on the limit of human stereoacuity

in ideal conditions [223]. The technique is more sensitive to latency as a delayed response could

produce visible jumps of disparity. Thus without implementing significant temporal smoothing,

eye tracking therefore remains a challenging problem. Furthermore, any stereo rendering approach,

including ours, is only as good as the optics and calibration of the headset and the accuracy of

user-specific parameters. Variation in lens distortion as the eye rotates off axis and across the lens

(commonly referred to as pupil swim) can cause its own disparity distortion. This is not something

our approach inherently corrects for, but it could be used in combination with existing pupil swim

correction approaches (see Section 2.2.3). Similarly, in practical use cases there is likely to be per-

user variation in the parameters of our eye model or even inaccuracies when measured on a per-user

basis. Even so, our model generally pushes the disparity in the empirically correct direction.
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While our studies demonstrate statistically significant effects, they all use task-specific stimuli.

Studies in more complex environments where the user’s cognitive load is higher may provide an

interesting setting for future user experiments. Moreover, it would be interesting to explore the

adaption of this technique for varifocal and multifocal displays, and the interaction of gaze-contingent

stereo rendering with other depth cues.

6.6 Summary

As VR and AR display systems strive to pass the visual Turing test, being able to render dynamic

gaze effects is important for their success. While gaze-contingent display techniques to improve

focus cues and visual comfort have received a lot of attention recently, with this work, we hope to

demonstrate that eye tracking can also improve stereo rendering. We demonstrate that accounting

for the dynamic shifts in the optical center of the eye can significantly improve disparity and depth

rendering; critical for achieving perceptual realism in emerging wearable computing systems.



Chapter 7

Concluding Remarks

In this dissertation, we introduce and evaluate several approaches that aim to create VR and AR

display systems capable of passing the visual Turing test using the limited bandwidth available in

current-generation systems. In particular, we build the foundations for new gaze-contingent display

techniques with higher bandwidth saving potential by exploiting additional perceptual limitations

of the HVS, including variations in spatio-temporal sensitivity across the retina (Chapter 3) and

attentional affects (Chapter 4), or by reducing system latency (Chapter 5). Additionally, we affirm

how gaze-contingent display is also powerful for rendering dynamic effects that improve perceptual

realism, namely by accounting for dynamic shifts of the optical center of the human eye (Chapter 6).

Here, we summarize key lessons learned and how the work described in this dissertation advances

the related fields of study. We also discuss limitations of the proposed approaches, new research

questions, and open problems which merit attention in future work.

7.1 Lessons Learned

Towards Spatio-temporal Rendering. The perceptual model for eccentricity-dependent spatio-

temporal flicker fusion that we describe in Chapter 3 aims to predict the temporal thresholds at which

a visual stimulus becomes (in)visible, for a given spatial frequency, eccentricity and luminance. As

such, this work forms the enabling foundation for new temporally foveated graphics techniques,

with the potential for bandwidth savings up to seven times higher than those afforded by current

spatial-only foveated models.

Inspired by a casual observation whereby a streetlight appears to irritatingly flicker in the periph-

ery, but appears stable upon direct gaze, here we set out to measure how human temporal sensitivity

is “antifoveated” in that it peaks in the mid-periphery. With foveated graphics focusing so heavily

on variations in spatial sensitivity, we had to wonder why we could not find discussions of the tem-

poral domain in the literature and set out to provide a model that could change this. This work has
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already inspired more interest in the field, with subsequent work demonstrating a comprehensive

model of CSF [56], which can also model relative sensitivity. However, it is still unclear how such

a temporally foveated display would be realized and further innovation is needed in graphics and

display technology to see this through.

Towards Attention-aware Rendering. The attention-aware CSF model that we describe in

Chapter 4 illustrates how our spatial perception changes depending on how we allocate our attention

across our visual field. Conventional methods for measuring CSF in the periphery encourage users

to keep their eyes fixated centrally but focus their perception in the periphery – a configuration

that likely overestimates sensitivity for most natural viewing conditions. We show that drawing

attention to the gaze position with a visual-based task does in fact decrease contrast sensitivity,

with an increasing effect with eccentricity. Consequently we demonstrate that tolerance for foveation

in the periphery is significantly higher when the user is concentrating on a task in the fovea, and

estimate potential bandwidth savings up to seven times higher that those afforded when this effect

is not considered.

Inspired by a recent explosion of wearable devices for measuring brain activity (e.g. EEG and

NIRS), we wondered whether cognitive state would affect perception. After diving into the literature,

we finally stumbled upon the concept of visual attention. While the concept of of “brain bandwidth”

intuitively made sense, it was not until we tried the foveation user study for the first time and could

actually feel ourselves tunnel-visioning, that we were convinced. But of course, the biggest hurdle

to adoption is the lack of a method for measuring this cognitive state. However, as we see extra

sensing capabilities being adopted in VR and AR devices e.g. outward facing cameras, EEG and

heart rate measurement, it’s almost inevitable that we start seeing new techniques for monitoring

cognitive state to improve user experience.

Low-latency Foveated Display. The latency, or the time between a change in the viewer’s

gaze and the resulting change in the display’s pixels, of a gaze-contingent display system is not

just important for managing user discomfort, but is critical to the bandwidth savings achievable

by foveated graphics techniques. In Chapter 5, present a custom, low-latency foveated compression

system and demonstrate that up to double the bandwith savings could be achieved, just by lowering

the system latency.

Despite being key to their success, the system latency of gaze-contingent displays is rarely dis-

cussed with any kind of vigor. Several works quote poorly justified thresholds or acceptable ranges,

but few truly dive into their impact. With this work we hope to frame system latency as not just

a systems engineering challenge, but as axis for improving the performance of every algorithm that

makes up the suite of foveated graphics. If we were able to demonstrate a doubling in performance

using our simple approach, we are excited to see how other authors use this axis to improve their

own works.
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Gaze-contingent Stereo Rendering. Humans have very high stereoscopic acuity, and so even

small inaccuracies in stereoscopic rendering can lead to objects being perceived at a different depth

that intended. Gaze-contingent stereo rendering, described in Chapter 6, improves the accuracy

of disparity and depth rendering by accounting for the dynamic shifts of the optical center of the

human eye. Our findings demonstrate significant improvements in shape distortion in a VR setting,

and consistent alignment of physical and digitally rendered objects in AR.

We’ve gotten away with conventional stereo rendering for while now, since the

vergence–accommodation conflict has prevented the rendering of content close to the eyes. But with

applications such as surgical guidance, begging for solutions, and the recent of emergence of varifocal

and multifocal display paradigms, it’s likely that the VR and AR displays of the future will quickly

reveal the importance of gaze-contingent stereo rendering. With disparity being the most significant

depth cue for objects within 1 m from the eyes [108], we would hope that even millimeters of error

would be deemed unacceptable before we would allow surgeons to use this technology to decide

where to cut into patients.

7.2 Future Directions

As VR and AR display systems strive to pass the visual Turing test, gaze-contingent rendering

and display paradigms are likely to play a key role. However, these solutions do not come without

challenges. In fact the very technology that enables it, eye tracking, may also present its biggest

challenge. All of the techniques described in this dissertation are heavily dependent on real-time,

accurate gaze position information. Eye tracking technology has advanced significantly since its

modern inception in the early 20th century, but still, can hardly be called a “solved problem”. The

accuracies and latencies of the commercial devices listed in Chapter 2, are recorded until the most

ideal of circumstances, and in practice are often much less ideal [119]. Such accuracies also often rely

on per-use calibration procedures which can be disruptive to a smooth user experience. Furthermore,

3D gaze tracking is almost always significantly worse and still an area of active research [9]. While

an outward facing “scene” camera has been a popular approach to help disambiguate sharp changes

in depth fixation, this adds to the privacy concerns already on the minds of consumers [228]. Finally,

power consumption and heat generation is also a factor to consider as VR and AR manufacturers

try to optimize battery life and comfort of their devices.

In working towards the goal of achieving perfect perceptual realism, much of the future work

in gaze-contingent displays will focus on accounting for individual differences between users. For

example, accounting for the spatio-temporal or attentional sensitivity of a particular user. For gaze-

contingent disparity rendering the nodal point, which we assumed to be the same for the entire

population, could be measured and accounted for in the rendering for each individual. Furthermore,



86 CHAPTER 7. CONCLUDING REMARKS

it’s likely that these techniques need to be adjusted and integrated with a user’s individual prescrip-

tion corrective optics. Finally, combining several gaze-contingent display techniques together, for

example, attention-aware with gaze-contingent stereo rendering, in perceptually correct manner will

be a big undertaking for the VR and AR communities moving forward.

The ultimate goal for VR and AR displays is the ability to make a user question whether what

they are seeing is real or virtual. While today, VR can provide amazingly immersive experiences

and AR can render impressive world-locked content, the percept is still not fully convincing. It

struggles to match the spatio-temporal and depth sensing capabilities of the human vision under the

limited compute budgets, hardware, and transmission bandwidths of wearable computing systems.

In this dissertation, we hope to spur progress in improving the perceptual realism of these displays

by demonstrating the powerful potential of gaze-contingent display.



Appendix A

Additional Material for Towards

Spatio-temporal Rendering

A.1 Gabor wavelets in display space

In Section 3.1 of the main text, we describe the general form of a Gabor wavelet as being a complex

sinusoid modulated by a Gaussian envelope, defined as:

g(x,x0, θ, σ, fs) = exp

(
−x− x0

2

2σ2

)
cos (2πfsx · [cos θ, sin θ]) , (A.1)

where x denotes the spatial location on the display, x0 is the center of the wavelet, σ is the

standard deviation of the Gaussian in visual degrees, and fs and θ are the spatial frequency in cpd

and angular orientation in degrees for the sinusoidal grating function.

In our application, it is more convenient to describe spatial position in terms of eccentricity,

measured in degrees of visual angle. Such transformation requires information about physical size

of a pixel, p, and the dimensions and pixel resolution of the display. Using Figure A.1, we can see

that:

tan(e) =
p(x− xC)

d/M
, (A.2)

where e is eccentricity, xC is the location of the pixel directly in front of the eye, d is the distance

to the virtual image and M is the magnification factor of the lenses. Finally, Equation A.2 can be

re-arranged and substituted into Equation A.1 to re-define the Gabor wavelet equation in terms of

eccentricity.
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Figure A.1: Schematic illustrating the geometrical relationship used to convert spatial location in pixels
to eccentricity in degrees of visual angle.

A.2 Fitting the Model

The model fitting in Section 3.2.1 of the main text introduces traditional regression fitting criteria as

well as a set of constraints that each variant of the model should adhere to. We also account for the

localization uncertainty in our measured sample point set X = (e, fs, ft) of eccentricities e, spatial

frequencies fs and detected CFF frequencies ft. To this goal we expand X by linearly interpolating

e in the entire extent of each stimulus m = [e±u] deg. This yields a new set Ω where each measured

CFF value is repeated 100 times with varying e covering stimuli radii. Further we split this set to

perceptible stimuli Ω1 with ft > 0 and remaining imperceptible stimuli Ω0 where CFF values could

not be measured. Ω0 is further expanded by acuity samples for fitting of the full model. These

are points in form (e,A(e), 0) sampled using the acuity model of Geisler and Perry [7] introduced

in the main text. The e for is sampled for 100 points between 0 and 25 cpd which represents the

measurement range of the original acuity data.

We express all our goals as loss expressions and therefore soften the originally hard constraints

to find parameters. We are looking for a set of parameters p that minimizes the total loss for our

CFF predictor Ψ(e, fs;p). First, an L2 loss is used to minimize the fitting error of the model as:

Lr =
1

|Ω1|
∑

(e,fs,ft)∈Ω1

∥Ψ(e, fs;p) − ft∥22. (A.3)

Second, we enforce the one-sided conservative and relaxed constraints using a thresholded linear loss
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as:

Lc =
1

|Ω1|
∑

(e,fs,ft)∈Ω1

|max (β(ft − Ψ(e, fs;p)), 0) |, (A.4)

with β = 1 for the conservative model and β = −1 for the relaxed model fit. Finally, a similar

approach is used to enforce zero predictions for imperceptible stimuli points as:

La =
1

|Ω0|
∑

(e,fs,ft)∈Ω0

|Ψ(e, fs;p)|. (A.5)

Together, our loss is L = Lr + α(Lc + La) where α is 40 for the conservative model and 1 for

the relaxed and full models. We optimized p using the Adam solver in PyTorch initialized by the

Levenberg–Marquardt algorithm in Python’s scipy package.

A.3 Estimation Study Results

Table A.1 shows the CFF values measured for each test Gabor wavelet. L1 refers to the original

380 cd/m2 luminance, averaged across the 9 participants, while L2 and L3 are the stimuli re-tested

at 23.9 cd/m2 (L2) and 3.0 cd/m2 the adaption luminance study (described in Section 3.2 of the

main text), averaged across the 4 participants.

A.4 Additional Details on Validation Study

A.4.1 Stimuli

We use our custom high-speed VR display to conduct a validation study, presenting all videos

monocularly to the right eye with the DLP in the 360 Hz 8-bit monochromatic mode (using only the

green LED), as previously. The videos consist of a single image frame perturbed by Gabor wavelet(s)

with carefully chosen parameters. Tables A.2 and A.3 list the exact list of chosen parameters for

the 5 groups of conditions outlined in the main text.

Three different images were chosen for variety (shown in Figure A.2), extracted (with permission)

from the stereo panoramas used in the work of Sitzmann et al. [229]. The same image pairings and

stimuli were used for every user. To combine the background image and Gabor wavelet(s) the

contrast of each was re-scaled to [0.25, 0.75] and [−0.25, 0.25], respectively, such that addition was

not clamped.

A.4.2 Participants

Eighteen adults participated in the study (age range 18-53, 8 female). All participants have normal

or corrected to normal vision and no history of visual deficits. The research protocol was approved
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Table A.1: Measured CFFs for each test Gabor wavelet averaged across participants. As described in the
main text, we define 6 orders by spatial frequency (and radius) of stimuli. The number and eccentricity
locations per order were chosen based on radius to uniformly sample the available eccentricity range. fs:
spatial frequency, σ: wavelet standard deviation, e: eccentricity. L1 refers to the original 380 cd/m2 lumi-
nance study (9 participants) while L1 and L2 are the 23.9 cd/m2 (L2) and 3.0 cd/m2 luminances re-tested
for the adaption luminance study (4 participants) described in Section 3.2.1 of the main text. (*) Note that
in practice the extent was limited by our display FOV and fs = 0.0055 cpd is used for analysis.

Order fs (cpd) σ (◦ ) e (◦)
Av. CFF (Hz)

L1 L2 L3

0 0.000(*) inf(*) 0.0 94.41 - -
1 0.011 63.0 0.0 92.80 78.97 69.41

2 0.041 17.2
0.0 85.99 68.11 62.33
19.2 89.63 - -

3 0.154 4.6
0.0 70.29 55.78 50.73
24.5 87.54 - -
48.2 76.90 - -

4 0.571 1.2

0.0 56.92 48.43 39.79
14.8 71.15 61.94 55.22
29.2 71.58 59.59 47.51
42.7 65.41 53.23 50.30
55.0 51.91 39.64 23.01

5 2.000 0.5

0.0 40.74

- -

12.3 49.15
24.2 36.70
35.7 32.43
46.5 10.12
56.5 NA

by the Institutional Review Board at Stanford University. Before each experiment, each subject

was individually briefed about the goal of the experiment and viewed an example of each image

unperturbed to orient them towards the maximum image quality achievable with our custom VR

display. An example of an image with a small flickering Gabor wavelet in the periphery was also

shown to demonstrate to the user that they should remain looking at the fixation cross for the

duration of the trial, even if such artifacts appear, and only observe the full FOV to the extent

possible with their peripheral vision.

A.4.3 Procedure

After the briefing, each subject was instructed to position their chin on the headrest as in the

previous user study. The start of each trial began with the subject being shown a small (1◦) white

cross for 1.5 s to indicate where they should fixate, after which the image would appear underneath

for 3 seconds. The subject then selected a categorical ranking from 1 (“bad“), 2 (“poor”), 3 (“fair“),
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Table A.2: Gabor wavelet parameters used to perturb the image in groups 1–3 of the validation study.

Group σ (◦) e (◦) fs (cpd) ft (Hz) Predicted CFF (Hz)

1 0.8 30.10 1.000

35

58.98
45
59
73
83

2 0.8 18.80

1.600

58

47.69
1.330 53.13
0.800 65.03
0.530 72.05

3 1.875

-27.46

0.267 75

81.67
-4.90 70.79
0.00 65.77
4.90 70.97
27.46 81.67

Table A.3: Gabor wavelet parameters used to perturb the image in groups 4 and 5 of the validation
study. Unlike groups 1–3, each row within a group is cumulative, and those rows with multiple Gabors, the
eccentricities are given in terms of a magnitude, the angular position of the first and the separation angle
between them.

Group No. Gabors σ (◦) e (◦) fs (cpd) ft (Hz) Predicted CFF (Hz)

4
2

1.875
30.1, [̸ 0◦,∆180◦]

1.000 75 58.988 30.1, [ ̸ 0◦,∆45◦]
16 30.1, [ ̸ 0◦,∆30◦]

5
4 2.5 24.9, [ ̸ 0◦,∆90◦] 0.800

61
65.55

72
8 5 30.0, [̸ 45◦,∆90◦] 0.267 86 81.50
9 20 0.0 0.100 82 75.17



92APPENDIX A. ADDITIONALMATERIAL FOR TOWARDS SPATIO-TEMPORAL RENDERING

1 2 3 4 5

Figure A.2: A single frame from each of the validation study stimuli groups. A red arrow has been added
to groups 1-3 to highlight the position of the single Gabor wavelet. Groups 4 and 5 show the final condition
where all Gabor stimuli are present.

4 (“good”) or 5 (“excellent”) using a provided keyboard. The subject was allowed to take as much

time as needed to enter the score, and replay the video up to one time. However, the subject could

not change the score once entered, after which the next video was displayed. Please see the main

text for the results.



Appendix B

Additional Material for

Attention-aware Rendering

B.1 Cortical Magnification

In Section 4.1 of the main text, we describe using the cortical magnification factor to scale the spatial

frequencies and diameters at the other retinal positions such that the discrimination thresholds

should be approximately the same. It has been argued that visual performance depends importantly

on the amount of cortical tissue devoted to the task. Thus, changes in detection and discrimination

thresholds across eccentricity can be explained by the concept of cortical magnification [62,201]. This

model describes how many neurons in the visual cortex are responsible for processing a particular

part of the visual field. The central, foveal, region is processed by many more neurons (per degree

of visual angle) than the periphery (illustrated in Figure B.1a).
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Figure B.1: Illustration of cortical magnification. (a) The cortical magnification maps the small area of
the fovea to a much larger area on the visual cortex. (b) The magnitude of cortical magnification according
to Dougherty et al. [230].
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For quantitative purposes, the cortical magnification factor is normally expressed in millimeters

of cortical surface per degree of visual angle. Several models have been proposed in the literature,

but for this work we use the model by Dougherty et al. [230] (shown in Figure B.1b) which was

fitted to fMRI measurements of V1. It is modeled as:

M(e) =
a0

e + e2
(B.1)

where e is eccentricity in visual degrees and the fitted parameters are a0 = 29.2 mm and e2 = 3.67◦.

It can be seen that the magnification factor M is largest for those areas corresponding to the fovea

and decreases with eccentricity for peripheral areas.

Virsu and Rovamo [62, 201] showed that the differences in detection of sinusoidal patterns and

also discrimination of their orientation or direction of movement, can be compensated by increasing

the size of the stimuli in the peripheral vision and the size increase is consistent with the inverse

of cortical magnification. This agrees with the contrast thresholds we measure for the “low” foveal

attention condition in Section 4.1.

B.2 Study Results

In Section 4.1 of the main text, we measure contrast thresholds under “low” , “medium” and “high” foveal

attention conditions. Here, we provide additional details for the results of our experiments. Fig-

ure B.2 shows trends from the main study plotted for individual users (averaged across the two

repetitions).
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Figure B.2: Contrast thresholds measured for individual subjects (thin lines) in our main study that were
used to fit our model (thick lines). For clarity, the attention levels are plotted together in the first panel and
separately in the other panels. Mean thresholds for each plot line were re-scaled to match the respective
global attention level means in order to remove subject-specific variation of the base sensitivity and highlight
the variation among attention levels and eccentricities.

In Table B.1 we list these contrast thresholds average across the 10 and 6 participants in each of

the main (No. 1-3) and validation (No.4-5) studies, respectively.
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Table B.1: Mean measured contrast thresholds for the stimuli in our main and validation studies for
different attention conditions (Section 4.1).

No.
Contrast threshold

Low Medium High

1 0.0297 0.0561 0.0851
2 0.0317 0.0864 0.1242
3 0.0314 0.1091 0.1368

4 0.0325 0.0607 0.0905
5 0.0452 0.1304 0.1806
6 0.0573 0.1415 0.1926
7 0.0508 0.1059 0.1832

In Section 4.2 of the main text we calibrate the perceptible foveation intensity for each of the

“low” , “medium” and “high” foveal attention conditions. In Table B.2 we list the MAR slopes

averaged across the 15 participants for each of the two test images (“Tulips” and “City”).

Table B.2: Mean measured MAR slopes from the foveation study for different attention conditions (Sec-
tion 4.2 of the main paper).

Image
MAR slope

Low Medium High

Tulips 0.0222 0.0499 0.0651
City 0.0153 0.0449 0.0623
Mountain 0.0221 0.0369 0.0581
Forest 0.0197 0.0361 0.0531



Appendix C

Additional Material for

Gaze-contingent Stereo Rendering

C.1 Modeling the Human Eye

In Section 6.1 of the main text we refer to six cardinal points and two axes of the human eye, however

additional definitions are prominent in the literature and for completeness, are explained here.

The lack of symmetry within the the human eye means that several different axes are required

to fully describe its optical properties [231]. The direction of these axes are often defined relative

to several cardinal points, as shown in Figure C.1. As we describe in the main text, the optical

axis connects the anterior vertex of the cornea (V) and the center of rotation (C). When they eye

is looking at a fixation point (P), the visual axis connects the point of fixation with the front nodal

point (N), which extends through the rear nodal point (N’), to intersect with the fovea (F). This

axis is not a straight line, since the nodal points are not coincident. Atchinson [217] also describes

two additional axes defined in terms of the entrance pupil of the eye (E), i.e., the optical image of

the pupil aperture as seen from the front of the eye. The first, the line-of-sight axis, connects the

center of the entrance pupil to the fixation point, while the pupillary axis connects it to the point

perpendicular to the surface of the cornea. If the eye was a centered system and the pupil was also

centered, the pupillary axis would lie along the optical axis, however, this is rarely the case.

The directions of these axes are also commonly described relative to each other, in terms of the

angles between them. As we describe in the main text, the angle between the optical and visual

axes is most often referred to as α. However also measured is λ and κ, the pupillary axis to line-of-

sight and visual axis angles, respectively. Since the pupillary and line-of-sight axes are defined with

respect to the center of the pupil, which changes with pupil diameter [232], the direction of these

axes and λ and κ vary with viewing conditions.
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Figure C.1: Schematic illustrating the axes and angles referred to in the literature. The fixation point
has been shown extremely close to the eye, thus exaggerating the angular differences between the visual,
line-of-sight and fixation axes. C: center of rotation, E: entrance pupil center, F: fovea, N: front nodal point,
N’: rear nodal point, P: fixation point, V: anterior vertex of the cornea.

C.2 Psychophysical Experiment Equation Derivation

In Section 6.1 of the main text, we present and use an equation first derived by Bingham [219] to

calculate the distance between the no-parallax point and the center of rotation, NC, using the target

distances L1 and L2, the rotation of the eye θ and the largest extent that a user can detect E:

NC =
EL1

(L2 − L1) sin θ + E cos θ
(C.1)

As illustrated in Figure C.2, this equation can be derived from the geometry of the experiment.

Namely, draw a line from the no-parallax point N to intersect the rear surface at 90◦ and call this

point X. Then call the points at the left-most edge of the front surface and center of the rear surface

W and Y , respectively, and the point at left-most edge of E, Z.
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Figure C.2: Schematic illustrating the derivation of the equation used to calculate the distance between
the no-parallax point and the center of rotation. Shown from above, front and rear surfaces are set up at
distances L1 and L2, respectively. As the eye rotates counterclockwise about its center C through an angle,
θ , the no-parallax point N is translated to the left revealing an extent, E, along the rear surface. W is the
point at the leftmost edge of the front surface. Y is the point at the center of the rear surface. Z is the
point at the left-edge of E. X is the point at which a ray drawn from N intersects the rear surface at 90◦.

Then △NXZ and △WY Z are similar and thus we have:

E

E + NC sin θ
=

L1 − L2

L2 −NC cos θ
(C.2)

which can be re-arranged to give Equation C.1.
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C.3 Random Dot Stereograms

In Sections 6.2 and 6.3 of the main text, we describe the use of random dot stereograms (RDS) for

rendering, and measuring disparity and depth perception in VR. Here we provide more description

on how they work. An RDS stimuli consists of a pair of related random dot patterns. Each image

seen separately appears to be a random collection of black and white dots. Yet, when the two

images are presented separately to the two eyes, the relationship between the two collections of

dots is detected by the visual pathways and the observer can perceive the surface of the object in

depth [6].

Figure C.3 shows how to create the two images comprising a RDS. First, create a sampling grid

and randomly assign a black or white intensity to each position in the grid. This random image of

black and white dots will be one image in the stereo pair. Next, select a region of the first image.

Displace this region horizontally, over-writing the original dots. Displacing this region of dots leaves

some unspecified positions; fill in these unspecified positions randomly with new black and white

dots.

RDS are a fascinating tool for vision science because the patterns we see in these stereo pairs are

computed by signals that are carried separately by the two eyes. First, they demonstrate the simple

but important point that even though we cannot see any monocular edge or surface information of

the object, we can still see the object based on the disparity cue [233].

Left Eye Right Eye

Perceived As

Figure C.3: Construction of a random dot stereogram. First, a random dot pattern is created to present
to, say, the left eye. The stimulus for the right eye is created by copying the first image, displacing a region
horizontally, and then filling the gap with a random sample of dots. When the right and left images are
viewed simultaneously, the shifted region appears to be in a different depth plane from the other dots. Image
adapted from Wandell [233].
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C.4 Psychometric Functions

We present the full set of psychometric functions from our no-parallax point measurement (Sec-

tion 6.1) and detection threshold (Section 6.2) experiments in Figures C.4 and C.5. The psignifit

Python package [220], was used for fitting psychometric functions to the data using Bayesian infer-

ence.

C.4.1 No-Parallax Point Position
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Figure C.4: Psychometric functions from the no-parallax point measurement experiment. Each plot
represents the fit for a single subject. The vertical lines intersecting the psychometric fit indicate the
threshold corresponding to the 75% correct response rate, and the horizontal line abutting it represents the
95% confidence interval. More negative E values correspond to subjects having a larger NC distance.
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C.4.2 Detection Threshold in VR
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Figure C.5: Psychometric functions from the detection threshold experiment. Each plot represents the fit
for a single subject. The vertical lines intersecting the psychometric fit indicate the threshold corresponding
to the 75% correct response rate, and the horizontal line abutting it represents the 95% confidence interval.
Lower fixation distances (in D) correspond to subjects being more sensitive to the shift in depth caused by
gaze-contingent rendering.
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tracing for vr headsets. In MultiMedia Modeling: 25th International Conference, MMM 2019,

Thessaloniki, Greece, January 8–11, 2019, Proceedings, Part I 25, pages 106–117. Springer,

2019.

[140] Andrew T Duchowski, David Bate, Paris Stringfellow, Kaveri Thakur, Brian J Melloy, and

Anand K Gramopadhye. On spatiochromatic visual sensitivity and peripheral color lod man-

agement. ACM Transactions on Applied Perception (TAP), 6(2):1–18, 2009.

[141] Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton Ka-

planyan. Neural supersampling for real-time rendering. ACM Transactions on Graphics

(TOG), 39(4):142–1, 2020.

[142] Xiaoxu Meng, Ruofei Du, and Amitabh Varshney. Eye-dominance-guided foveated rendering.

IEEE transactions on visualization and computer graphics, 26(5):1972–1980, 2020.

[143] Chanhyung Yoo, Jianghao Xiong, Seokil Moon, Dongheon Yoo, Chang-Kun Lee, Shin-Tson

Wu, and Byoungho Lee. Foveated display system based on a doublet geometric phase lens.

Optics Express, 28(16):23690–23702, 2020.

[144] Seungjae Lee, Mengfei Wang, Gang Li, Lu Lu, Yusufu Sulai, Changwon Jang, and Barry

Silverstein. Foveated near-eye display for mixed reality using liquid crystal photonics. Scientific

Reports, 10(1):16127, 2020.

[145] Guanjun Tan, Yun-Han Lee, Tao Zhan, Jilin Yang, Sheng Liu, Dongfeng Zhao, and Shin-Tson

Wu. Foveated imaging for near-eye displays. Optics express, 26(19):25076–25085, 2018.

[146] Akitoshi Yoshida, Jannick P Rolland, and John H Reif. Optical design and analysis of a

head-mounted display with a high-resolution insert. In Novel Optical Systems Design and

Optimization, volume 2537, pages 71–82. SPIE, 1995.

[147] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and Junchen Jiang. Pano: Op-

timizing 360 video streaming with a better understanding of quality perception. In Proceedings

of the ACM Special Interest Group on Data Communication, pages 394–407. 2019.



114 BIBLIOGRAPHY

[148] Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu, and Yao Wang. Flocking-based live stream-

ing of 360-degree video. In Proceedings of the 11th ACM Multimedia Systems Conference, pages

26–37, 2020.

[149] Jiawen Chen, Miao Hu, Zhenxiao Luo, Zelong Wang, and Di Wu. Sr360: boosting 360-degree

video streaming with super-resolution. In Proceedings of the 30th ACM Workshop on Network

and Operating Systems Support for Digital Audio and Video, pages 1–6, 2020.

[150] Miguel Fabian Romero-Rondón, Lucile Sassatelli, Frédéric Precioso, and Ramon Aparicio-

Pardo. Foveated streaming of virtual reality videos. In Proceedings of the 9th ACM Multimedia

Systems Conference, pages 494–497, 2018.

[151] Mattis Jeppsson, H̊avard N Espeland, Tomas Kupka, Ragnar Langseth, Andreas Petlund,

Qiaoqiao Peng, Chuansong Xue, Dag Johansen, Konstantin Pogorelov, H̊akon Stensland, et al.

Efficient live and on-demand tiled hevc 360 vr video streaming. International Journal of

Semantic Computing, 13(03):367–391, 2019.

[152] Marc Lambooij, Wijnand IJsselsteijn, Marten Fortuin, Ingrid Heynderickx, et al. Visual dis-

comfort and visual fatigue of stereoscopic displays: a review. Journal of imaging science and

technology, 53(3):30201–1, 2009.

[153] Frank L Kooi and Alexander Toet. Visual comfort of binocular and 3d displays. Displays,

25(2-3):99–108, 2004.

[154] Takashi Shibata, Joohwan Kim, David M Hoffman, and Martin S Banks. The zone of comfort:

Predicting visual discomfort with stereo displays. Journal of vision, 11(8):11–11, 2011.

[155] Eli Peli, T Reed Hedges, Jinshan Tang, and Dan Landmann. 53.2: A binocular stereoscopic

display system with coupled convergence and accommodation demands. In SID Symposium

Digest of Technical Papers, volume 32, pages 1296–1299. Wiley Online Library, 2001.

[156] Philippe Hanhart and Touradj Ebrahimi. Subjective evaluation of two stereoscopic imag-

ing systems exploiting visual attention to improve 3d quality of experience. In Stereoscopic

Displays and Applications XXV, volume 9011, pages 93–103. SPIE, 2014.

[157] Petr Kellnhofer, Piotr Didyk, Karol Myszkowski, Mohamed M Hefeeda, Hans-Peter Seidel,

and Wojciech Matusik. Gazestereo3d: Seamless disparity manipulations. ACM Transactions

on Graphics (TOG), 35(4):1–13, 2016.

[158] Michael Mauderer, Simone Conte, Miguel A Nacenta, and Dhanraj Vishwanath. Depth per-

ception with gaze-contingent depth of field. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, pages 217–226, 2014.



BIBLIOGRAPHY 115

[159] Andrew T Duchowski, Donald H House, Jordan Gestring, Rui I Wang, Krzysztof Krejtz,

Izabela Krejtz, Rados law Mantiuk, and Bartosz Bazyluk. Reducing visual discomfort of 3d

stereoscopic displays with gaze-contingent depth-of-field. In Proceedings of the acm symposium

on applied perception, pages 39–46, 2014.

[160] Margarita Vinnikov and Robert S Allison. Gaze-contingent depth of field in realistic scenes:

The user experience. In Proceedings of the symposium on eye tracking research and applications,

pages 119–126, 2014.

[161] Robert Konrad, Emily A Cooper, and Gordon Wetzstein. Novel optical configurations for

virtual reality: Evaluating user preference and performance with focus-tunable and monovision

near-eye displays. In Proceedings of the 2016 CHI conference on human factors in computing

systems, pages 1211–1220, 2016.

[162] Nitish Padmanaban, Robert Konrad, Tal Stramer, Emily A Cooper, and Gordon Wetzstein.

Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays.

Proceedings of the National Academy of Sciences, 114(9):2183–2188, 2017.

[163] David Dunn, Cary Tippets, Kent Torell, Petr Kellnhofer, Kaan Akşit, Piotr Didyk, Karol
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